
16

Reasoning about “Reasoning about Reasoning”
Semantics and Contextual Equivalence for Probabilistic Programs with NestedQueries and Recursion

YIZHOU ZHANG, University of Waterloo, Canada

NADA AMIN, Harvard University, USA

Metareasoning can be achieved in probabilistic programming languages (PPLs) using agent models that

recursively nest inference queries inside inference queries. However, the semantics of this powerful, reflection-

like language feature has defied an operational treatment, much less reasoning principles for contextual

equivalence.

We give formal semantics to a core PPL with continuous distributions, scoring, general recursion, and nested

queries. Unlike prior work, the presence of nested queries and general recursion makes it impossible to stratify

the definition of a sampling-based operational semantics and that of a measure-theoretic semantics—the

two semantics must be defined mutually recursively. A key yet challenging property we establish is that

probabilistic programs have well-defined meanings: limits exist for the step-indexed measures they induce.

Beyond a semantics, we offer relational reasoning principles for probabilistic programs making nested

queries. We construct a step-indexed, biorthogonal logical-relations model. A soundness theorem establishes

that logical relatedness implies contextual equivalence. We demonstrate the usefulness of the reasoning

principles by proving novel equivalences of practical relevance—in particular, game-playing and decision-

making agents. We mechanize our technical developments leading to the soundness proof using the Coq proof

assistant. Nested queries are an important yet theoretically underdeveloped linguistic feature in PPLs; we are

first to give them semantics in the presence of general recursion and to provide them with sound reasoning

principles for contextual equivalence.

CCS Concepts: • Theory of computation→ Probabilistic computation; Program semantics; Program
reasoning; • Mathematics of computing → Bayesian computation.

Additional Key Words and Phrases: Metareasoning, nested queries, logical relations, program equivalence.

ACM Reference Format:
Yizhou Zhang and Nada Amin. 2022. Reasoning about “Reasoning about Reasoning”: Semantics and Contextual

Equivalence for Probabilistic Programs with Nested Queries and Recursion. Proc. ACM Program. Lang. 6, POPL,
Article 16 (January 2022), 28 pages. https://doi.org/10.1145/3498677

1 INTRODUCTION
Probabilistic programming languages (PPLs) are, in essence, programming languages that support

making random choices (i.e., sampling) and scoring random choices (i.e., conditioning).

PPLs have been used to model and solve planning and decision-making problems. Intelligent

agents are modeled as probabilistic programs that make random choices and condition on those

choices leading to desired outcomes. Their intelligent behavior arises from applying Bayesian

Authors’ addresses: Yizhou Zhang, yizhou@uwaterloo.ca, David R. Cheriton School of Computer Science, Davis Centre, 200

University AvenueWest, University ofWaterloo, Waterloo, Ontario, N2L 3G1, Canada; Nada Amin, namin@seas.harvard.edu,

John A. Paulson School of Engineering and Applied Sciences, 4.413 Science and Engineering Complex, 150 Western Avenue,

Harvard University, Allston, Massachusetts, 02134, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART16

https://doi.org/10.1145/3498677

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

https://doi.org/10.1145/3498677
https://doi.org/10.1145/3498677

16:2 Yizhou Zhang and Nada Amin

Sample a location from the prior
1 def SampleLoc (bias) =
2 if sample Bernoulli(bias)
3 then “Café A” else “Café B”

Condition on the locations coinciding
4 def ScoreLoc (loc1, loc2) =
5 if loc1 = loc2 then score 1 else score 0

Outermost query, inferring Alice’s choice
16 def Main () = sample (query Alice (8))

Agents make nested queries to reason about each other
6 def Alice (depth) =
7 let aliceLoc = SampleLoc (0.8) in
8 let bobLoc = sample (query Bob (depth − 1)) in
9 let _ = ScoreLoc (aliceLoc, bobLoc) in aliceLoc

10 def Bob (depth) =
11 let bobLoc = SampleLoc (0.45) in
12 if depth > 0 then
13 let aliceLoc = sample (query Alice (depth)) in
14 let _ = ScoreLoc (aliceLoc, bobLoc) in bobLoc
15 else bobLoc

Figure 1. Schelling’s coordination game via recursively nested queries [Stuhlmüller and Goodman 2014]

inference (also referred to as queries in PPLs) to the probabilistic programs. Therefore, in broad

strokes, querying a probabilistic program gives rise to the ability to reason.

Nested queries. Querying a program that further makes queries—hence nested queries—gives rise
to the ability to reason about reasoning.

Stuhlmüller and Goodman [2014] present applications of nested queries in metareasoning. A first

example they give is a coordination game of the kind discussed by Schelling [1980]: two agents,

Alice and Bob, want to meet up in a café but have no way to contact each other; however, they

know each other’s preference about the two cafés in town. The probabilistic program in Figure 1

models this problem using two mutually recursive functions, Alice and Bob. Agents’ preferences
are expressed by invoking function SampleLoc with their prior biases.

Alice reasons as follows: she samples a location from the prior (line 7), reasons about where Bob

would like to go (line 8), and conditions her choice on Bob’s choosing the same location (line 9).

This conditioning is done in ScoreLoc, which assigns a zero score when agents choose different

locations. Bob reasons in a similar way.

Notice that 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏 are mutually recursive, with the recursive calls made inside queries

(lines 8 and 13). On line 13, Bob uses the expression query Alice (depth) to infer a distribution

over Alice’s choices. The top-level Main function (line 16) makes an outermost (hence non-nested)

query, unleashing the nested reasoning “Alice thinks that Bob thinks that Alice thinks that ...”.

The depth parameter bounds the depth of recursion, echoing that agents have bounded rationality.

Because Alice prefers Café A strongly (line 7) while Bob is roughly indifferent (line 11), the result

of inference will converge on them choosing Café A as the depth of recursion increases.

More uses of recursively nested queries abound [Evans et al. 2017], for example, in sequential-

decision-making applications: an agent wants to learn actions that, given the state it is in, minimize

its chance of incurring high cost over time. The agent’s action will influence its future states, which

will in turn influence the agent’s future actions. Thus, to choose good actions, the agent must

reason recursively about how itself will reason in the future. Beyond this single-agent setting, the

powerful combination of nested queries and recursion has been used to model metareasoning in

multi-agent systems [Seaman et al. 2020], where an agent must reason about how its opponents

will react to its action and how it will further respond to its opponents’ reactions.

Formalization challenges. Nested queries, along with recursion, are a powerful linguistic con-

struct for expressing cognitive models and artificial intelligence problems. However, their formal

semantics—in particular, operational meanings—is underdeveloped.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:3

Bayesian inference 𝑝 (𝑧 |𝑥) = 𝑝 (𝑧, 𝑥)/𝑝 (𝑥) introduces a normalization factor 𝑝 (𝑥) =
∫
𝑝 (𝑧, 𝑥) d𝑧

that integrates over all possible executions of the program being queried. This integral, termed

model evidence, is the same for all executions if inference exists only at the top level and queries

cannot be nested. Hence, model evidence is often referred to as the normalization constant, and it

makes sense for a PPL semantics to concern itself with only unnormalized probability 𝑝 (𝑧, 𝑥) in
the absence of nested queries [Culpepper and Cobb 2017; Wand et al. 2018].

However, the model evidence 𝑝 (𝑥) of a nested query is in general different for each execution of

the nesting query, because the nested query itself may be dependent on random choices made in

the nesting query. Therefore, the model evidence of a nested Bayesian-inference problem can no

longer be considered a constant from the perspective of a nesting query. Normalization must not

be ignored, and a semantics must deal with it head-on.

The possibility to nest queries inside queries implies the semantics must perform integration

inside integration—the semantics must be self-referential. Tying the knot of this fixpoint definition

is an open challenge in operational-semantics-based language models. In prior work [Borgström

et al. 2016; Culpepper and Cobb 2017; Wand et al. 2018; Szymczak and Katoen 2019], a measure-

theoretic semantics is defined by integrating a standalone, sampling-based operational semantics.

Unfortunately, nested queries preclude such a stratified approach: the sampling-based operational

semantics needs to invoke the measure semantics to obtain normalization factors, with the measure

semantics in turn invoking the sampling-based operational semantics to perform integration. In

a different approach, the distribution-based operational treatment of Staton et al. [2016] readily

supports nested queries (though not recursion), but the meaning of nested queries is defined only

by assuming a normalization function.

General recursion—hence possible nontermination—further complicates the matter. Almost

surely (a.s.) terminating programs naturally exist in practice—e.g., geometric distributions and

infinite-horizon Markov decision processes with absorbing transitions. Such programs admit

nonterminating executions, albeit the measure of these executions is zero in the limit (i.e., when

the number of allowable evaluation steps tends to infinity). Icard [2017] and Szymczak and Katoen

[2019] further show that probabilistic programs with even positive measure of nontermination offer

useful modeling power. Unfortunately, nontermination poses challenges due to the self-referential

nature of the semantics of nested queries: we are not licensed to take the limit of the semantics (to

give meaning to a nested, possibly nonterminating program) while the semantics is being defined.

Finally, when we do take the limit of the measure semantics, we must make sure that the limit

exists. Because the measure semantics is essentially a fixpoint definition that allows integration to

happen recursively inside integration, proving the existence of limit measures becomes a nontrivial

undertaking that necessitates care in posing induction hypotheses and organizing proofs.

Equational reasoning. Reasoning about program equivalence is a fundamental problem in se-

mantics research. The gold standard of equivalence is contextual equivalence [Morris 1968] (a.k.a.

observational equivalence). It considers two terms equivalent if composing them with any well-
formed program context yields two programs with indistinguishable behaviors.

Intriguing equivalence questions arise with probabilistic programs. For example, consider the

following two terms, 𝑒1 and 𝑒2:

𝑒1
def

= let x = sample Bernoulli(0.2) in
let _ = score (if x = y then 1 else 0) in
x

𝑒2
def

= f (𝑦)

Function 𝑓 used in 𝑒2
def f (𝑦) =
let x = sample Bernoulli(0.2) in
if x = y then x
else f (𝑦) # recursive call

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

16:4 Yizhou Zhang and Nada Amin

At first sight, they appear equivalent. Both terms return 𝑥 , the value of a Bernoulli random variable.

And when they return, both satisfy the constraint 𝑥 = 𝑦, where 𝑦 is a free, boolean variable

defined in a surrounding program context. Term 𝑒1 enforces 𝑥 = 𝑦 using score: executions in
which 𝑥 ≠ 𝑦 has zero probability in the posterior distribution. Term 𝑒2 enforces 𝑥 = 𝑦 using a

recursive function 𝑓 that does not return until the constraint is satisfied. Notice that while 𝑒1
terminates certainly for any 𝑦, 𝑒2 terminates almost surely: the probability of 𝑒2 not terminating is 0

(lim𝑛→∞ 0.8𝑛 or lim𝑛→∞ 0.2𝑛 , depending on the value 𝑦 takes). So 𝑒1 and 𝑒2 cannot be distinguished

on the grounds of probability of nontermination, either.

Despite our intuition, these two terms cannot be considered contextually equivalent: there exist

program contexts that can distinguish them. One such program context 𝐶 is given below:

𝐶
def

= let y = sample Bernoulli(0.5) in
let _ = [·] in y # To compose a term with 𝐶 , place it in the hole [·]

It binds 𝑦 to a fair coin flip, executes the term placed in the hole, and returns 𝑦. The observable

behavior of the resulting program 𝐶 [𝑒1] or 𝐶 [𝑒2] is the distribution over its return value 𝑦. Pro-

gram 𝐶 [𝑒1] involves conditioning, which affects the posterior distribution of 𝑦: a priori 𝑥 = False

is more likely than 𝑥 = True, so a posteriori 𝑦 = False is more likely than 𝑦 = True. By contrast,

program 𝐶 [𝑒2] does not involve conditioning, so 𝑦 = True and 𝑦 = False are equally likely.

Nested queries add an important twist. Place 𝑒1 inside a nested inference query and consider the

equivalence question again:

𝑒 ′
1

def

= sample (query 𝑒1)

Terms 𝑒 ′
1
and 𝑒2 are contextually equivalent. In particular, when they are composed with the program

context 𝐶 from above, the resulting distribution of 𝑦 in each program remains a fair coin flip. The

reason is that a query denotes a conditional distribution, and the influence of conditioning on

posterior probabilities stops at the boundary of the distribution.

Another way to look at it is that 𝐶
[
𝑒 ′
1

]
stands for a different (possibly unnormalized) joint distri-

bution than𝐶 [𝑒1] does. Program𝐶 [𝑒1] stands for the joint distribution 𝑝 (𝑥,𝑦), defined below, where
BernoulliPMF (𝑏, ·) is the probability mass function of a Bernoulli distribution with parameter 𝑏,

and 1𝑃 is the indicator function that has value 1 when proposition 𝑃 holds and 0 otherwise:

𝑝 (𝑥,𝑦) def

= 𝑝 (𝑦) 𝑝 (𝑥) 1𝑥=𝑦 = BernoulliPMF (0.5, 𝑦) BernoulliPMF (0.2, 𝑥) 1𝑥=𝑦 # 𝐶 [𝑒1] joint distr.

𝑝 ′(𝑥,𝑦) def

= 𝑝 (𝑦)
𝑝 (𝑥) 1𝑥=𝑦∫
𝑝 (𝑥) 1𝑥=𝑦 d𝑥

≠ 𝑝 (𝑥,𝑦) # 𝐶
[
𝑒 ′
1

]
joint distr.

Program 𝐶
[
𝑒 ′
1

]
stands for the joint distribution 𝑝 ′(𝑥,𝑦), defined above. It differs from 𝑝 (𝑥,𝑦) in

that it normalizes the joint probability 𝑝 (𝑥) 1𝑥=𝑦 denoted by 𝑒1. Marginalizing out 𝑥 , we obtain the

distribution over the values to which 𝐶
[
𝑒 ′
1

]
can evaluate:∫

𝑝 ′(𝑥,𝑦) d𝑥 =

∫
𝑝 (𝑦)

𝑝 (𝑥) 1𝑥=𝑦∫
𝑝 (𝑥) 1𝑥=𝑦 d𝑥

d𝑥 = 𝑝 (𝑦)
∫
𝑝 (𝑥) 1𝑥=𝑦 d𝑥∫
𝑝 (𝑥) 1𝑥=𝑦 d𝑥

= 𝑝 (𝑦) = BernoulliPMF (0.5, 𝑦)

Whereas in the above we argued semi-formally that 𝐶
[
𝑒 ′
1

]
denotes the same distribution as

Bernoulli(0.5), the discourse does not constitute a rigorous argument of contextual equivalence

between 𝑒 ′
1
and 𝑒2. For one thing, contextual equivalence is a universally quantified property—

its discriminative power comes from the universal quantification—so we need to show 𝐶
[
𝑒 ′
1

]
and 𝐶 [𝑒2] induce identical distributions for any program context 𝐶 . Moreover, PPLs afford a

much richer model-specification language than the language of probability can capture. To reason

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:5

Figure 2. Trajectories of two robots. The objective is to reach the goal region (green square) in the fewest possi-
ble steps and avoid the trap (red square). The robots sample equally good trajectories. The programs differ only
in that one moves some code from outside a nested query to inside. But inference efficiency differs greatly.

about equivalence in general, we need reasoning principles that operate directly on programming

constructs: higher-order functions, general recursion, etc.

Equivalence questions arise also from metareasoning agents, where nesting is induced by recur-

sion. Consider again the coordination game in Figure 1. One would presume that nested queries are

indispensable in this example; after all, it is the very first example Stuhlmüller and Goodman [2014]

use to introduce nested queries in the Church PPL [Goodman et al. 2008]. Yet we later prove the

program in Figure 1 equivalent to a variant in which the recursive calls to Bob and to Alice (lines 8
and 13) are made without being placed inside queries! Puzzling it may seem, the intuition of this

equivalence begins to surface after some contemplation: random choices made by nesting queries

(lines 7 and 11) are not used by an agent to reason about the other agent in nested queries—by the

problem definition, the agents cannot communicate. The equivalence happens to hold.

Equational reasoning is often used to relate programs under program optimization, where

one program outperforms the other. Consider, in Figure 2, the trajectories sampled by two path-

planning robots implemented as Markov decision processes (MDPs). The robots make a sequence of

decisions to reach the goal while minimizing the time taken and avoiding obstacles. The programs

use nested queries to reason about robots’ own reasoning in the future. They differ in that one

program puts code inside a recursively nested query, whereas the same code is outside the query

in the other program. Figure 2 hints that the two implementations may be equivalent, as the

sampled trajectories are equally good. However, they cause the default inference algorithm of

WebPPL [Goodman and Stuhlmüller 2014] to exhibit different performance measured by running

time. Formally substantiating the equivalence serves to justify one of the robotics programs as a

semantics-preserving optimization of the other.

Contributions. This paper makes the following contributions:

• In §4, we give semantics to a core PPL with nested queries and general recursion, addressing

the semantic challenge of mutual reference between an operational semantics and a measure

semantics. Step indexing forms a well-founded basis on which we define the semantics. We

prove that programs have well-defined meanings: limits of step-indexed measures exist.

• In §6, we approach contextual equivalence (defined in §5) using the powerful technique of

logical relations. We construct a step-indexed logical-relations model and prove that logically

related terms are contextually equivalent. This theorem offers a sound reasoning principle for

proving contextual equivalence concerning nested queries.

• In §7, we demonstrate the usefulness of our theory by using it to prove novel equivalences.

The programs are inspired by real-world applications, yet the equivalences have not been

suggested before. They reveal the irrelevance of nested queries in a usage previously considered

quintessential and bear on the correctness of program optimizations that speed up inference.

• We mechanize our core technical developments using the Coq proof assistant. The mechaniza-

tion effort is available at https://github.com/yizhouzhang/rrr-popl2022-coq.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

https://github.com/yizhouzhang/rrr-popl2022-coq

16:6 Yizhou Zhang and Nada Amin

values 𝑣 ::= x | c𝑟 | () | True | False | _x . 𝑒 | fix this. 𝑒 |
(𝑣1, 𝑣2) | Unif | query 𝑒

terms 𝑒 ::= 𝑣 | 𝑒1 𝑒2 | fst 𝑒 | snd 𝑒 | if 𝑒1 then 𝑒2 else 𝑒3 |
let x = 𝑒1 in 𝑒2 | op𝑛 (𝑒1, ..., 𝑒𝑛) | sample 𝑒 | score 𝑒

unary operators op1 ::= log | exp | ...
binary operators op2 ::= + | − | × | ÷ | < | ≤ | ...
ternary operators op3 ::= NormalPDF | NormalCDF−1 | ...

types 𝜏 ::= R | 1 | 2 | 𝜏1→𝜏2 | (𝜏1, 𝜏2) | dist 𝜏
typing environments Γ ::= · | Γ, x : 𝜏

Γ ⊢ 𝑒 : 𝜏
Γ, this : 1→𝜏 ⊢ 𝑒 : 𝜏
Γ ⊢ fix this. 𝑒 : 1→𝜏

op𝑛 : R𝑛→𝜏 Γ ⊢ 𝑒1 : R · ·· Γ ⊢ 𝑒𝑛 : R

Γ ⊢ op𝑛 (𝑒1, ..., 𝑒𝑛) : 𝜏
Γ ⊢ 𝑒 : R

Γ ⊢ score 𝑒 : 1
Γ ⊢ 𝑒 : dist 𝜏

Γ ⊢ sample 𝑒 : 𝜏
Γ ⊢ Unif : dist R

Γ ⊢ 𝑒 : R
Γ ⊢ query 𝑒 : dist R

Γ ⊢ 𝑒 : 2
Γ ⊢ query 𝑒 : dist 2

op𝑛 : R𝑛→𝜏 log : R1→R ≤ : R2→2 NormalPDF : R3→R NormalCDF−1 : R3→R

Figure 3. Syntax and selected static semantics

We proceed with the statics of the core PPL (§2) and a brief review of measure theory (§3).

2 SYNTAX AND STATIC SEMANTICS
Syntax. Figure 3 defines the syntax of the PPL we work with. It is a statically typed lambda

calculus. The usual value forms include variables, real values, the unit value, boolean values, lambda

abstractions, fixpoint definitions, and pairs. Program variables are notated in blue. Capture-free

substitution of value 𝑣 for variable x in term 𝑒 is notated 𝑒 {𝑣/x}. Real constants c𝑟 have type R,
with metavariable 𝑟 ranging over real numbers on the real line R. General recursion is expressed

through the fixpoint construct fix this. 𝑒 , where variable this is the self reference bound in 𝑒 . We

will abbreviate let _ = 𝑒1 in 𝑒2 as 𝑒1; 𝑒2. We require pair components to be values; let-expressions
can be used when pair components need to take evaluation steps. Pair projection is denoted by

fst 𝑒 and snd 𝑒 . Pairs, along with the fixpoint construct, enable mutual recursion.

The calculus builds in the uniform distribution, Unif . The sample form is used to draw samples

from distributions. For example, sample Unif produces a real number in the interval [0, 1]. Other
common distributions are encoded using inverse transform sampling that transforms a Unif sample

into the desired distribution. For example, sampleNormal (defined below) is a lambda abstraction

returning a sample from a normal distribution. It uses NormalCDF−1, a built-in ternary operator

that constructs inverse cumulative distribution functions (a.k.a. quantile functions) for normal

distributions. Likewise, sampleBern returns a Bernoulli sample.

sampleNormal
def

= _`. _𝜎. let x = sample Unif in NormalCDF−1 (`, 𝜎, x)
sampleBern

def

= _p. let x = sample Unif in if x ≤ p then True else False

The score form is for conditioning: it adjusts the probability of the current execution based on

its argument, which evaluates to a real value. The higher this real value is, the more probable the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:7

current execution is deemed in the posterior distribution denoted by the probabilistic program. For

example, MDP agents (Figures 2 and 9) can choose low-cost actions by conditioning as follows:

score exp(−cost)

The higher a state costs, the exponentially less likely actions leading to the state will be chosen—the

MDP agent effectively does Boltzmann exploration [Sutton and Barto 2018], choosing actions with

“softmin” cost to balance exploration and exploitation. While this example uses score to impose a

soft constraint, the program in Figure 1 imposes hard constraints by assigning 0 scores: zero-scored

executions are ruled out from posterior distributions.

The query form, as a first-class language construct, enables nested queries—it is our core con-

tribution to have given it meaning. In query 𝑒 , the subterm 𝑒 may involve sampling, scoring, and

further nested queries. The term query 𝑒 , as a whole, is regarded as the distribution over evaluation

outcomes of 𝑒 , conditional on the scoring in 𝑒 .

Typing. Figure 3 shows selected typing rules. The unit type is denoted as 1 and the boolean type 2.
Recursive definitions are functions that take as input at least a unit value. An 𝑛-ary operator op𝑛

takes as input 𝑛 reals. We denote the type of reals by R, to differentiate from the real line R.
Term sample 𝑒 has type 𝜏 , provided that term 𝑒 , a distribution, has type dist 𝜏 .Unif is a distribution

over reals, so it has type dist R. Term query 𝑒 is a distribution over values of type R (or 2), provided
𝑒 has type R (or 2). Term score 𝑒 has the unit type.

Notice that well-typed programs do not necessarily reduce to values or diverge; they may get

stuck. In particular, 𝑛-ary operators like log and ÷ are only partially defined. In this paper we

consider the job of preventing such errors to fall on the programmer rather than the type system.

3 BRIEF RECAP OF MEASURE THEORY
We include a cheat sheet on measure theory, and defer to textbooks such as Stein and Shakarchi

[2005] and Tao [2011] for further reading.

𝜎-algebras A 𝜎-algebra on a set 𝑋 is a collection Σ of subsets of 𝑋 that includes 𝑋 itself and is

closed under complement and under countable unions. By implication, a 𝜎-algebra includes the

empty set and is closed under countable intersections.

Measurable spaces A measurable space (𝑋, Σ) consists of an underlying set and its 𝜎-algebra.

Extended nonnegative reals R+
denotes the set of nonnegative reals extended with infinity∞.

Measures Let (𝑋, Σ) be a measurable space. A function ` from Σ to R+
is called a measure

if it satisfies nonnegativity, null empty set, and countable additivity. We also refer to the

quantity ` (𝐴) that ` assigns to a measurable subset 𝐴 ∈ Σ as the measure of 𝐴.

Measure spaces The triple (𝑋, Σ, `) is called a measure space.

𝜎-finite measures and (sub)probability measures The measure ` of a measure space (𝑋, Σ, `)
is 𝜎-finite if 𝑋 can be decomposed into a countable union of sets with finite measure. When

` (𝑋) ≤ 1, it is called a subprobability measure. When ` (𝑋) = 1, it is called a probability measure

and (𝑋, Σ, `) a probability space.

Lebesgue measure The Lebesgue measure is a 𝜎-finite measure for 𝑛-dimensional Euclidean

space, corresponding to length, area and volume for 𝑛 = 1, 2, 3.

Indicator functions 1𝑃 takes the value 1 when the proposition 𝑃 is true; otherwise it is 0.

Measurable functions A measurable function is a function that maps elements in one measure

space to elements in another measure space such that the preimage of any measurable subset of

the codomain is a measurable subset of the domain.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

16:8 Yizhou Zhang and Nada Amin

Lebesgue integration Given a measurable function 𝑓 : 𝑋 → R+
, the Lebesgue integral of 𝑓 over

a measure space (𝑋, Σ, `) is denoted as
∫
𝑓 d` or

∫
𝑓 (𝑥) ` (d𝑥). We equip some measurable spaces

with a stock measure: the Lebesgue measure `R over reals and the measure `S over an entropy

space (§4.1). When integration of 𝑓 is with respect to a stock measure `, we write
∫
𝑓 (𝑥) d𝑥 to

mean

∫
𝑓 (𝑥) ` (d𝑥). We also use the notation

∫ 𝑏
𝑎
𝑓 (𝑟) d𝑟 to mean

∫
𝑓 (𝑟) 1𝑎≤𝑟 ≤𝑏 `R (d𝑟).

Monotone convergence theorem (MCT) (I) Let {𝑎𝑛 ∈ R+}𝑛∈N be a nondecreasing sequence.

Then lim𝑛→∞ 𝑎𝑛 = sup𝑛 {𝑎𝑛}. (II) Let (𝑋, Σ, `) be a measure space and {𝑓𝑛 : 𝑋 → R+}𝑛∈N be

a pointwise nondecreasing sequence of measurable functions. Then it is legal to interchange

limit and integration: lim𝑛→∞
∫
𝑓𝑛 d` =

∫
lim𝑛→∞ 𝑓𝑛 d`. Similar statements to (I) and (II) hold,

mutatis mutandis, for nonincreasing sequences and their infima.

4 OPERATIONAL SEMANTICS AND MEASURE SEMANTICS
4.1 Semantics in the Absence of NestedQueries
We introduce the semantics in a phased way by first giving semantics to the core PPL without

considering nested queries. The approach is developed in prior work, first defining a deterministic

operational semantics and then integrating it over randomness to form a measure semantics. Thus,

the semantics can be viewed as an idealized implementation of importance sampling (or likelihood

weighting), conveying the operational intuition of a PPL.

Entropy space. Following prior work [Culpepper and Cobb 2017; Wand et al. 2018; Szymczak and

Katoen 2019], we use an entropy space (S, ΣS, `S) as the source of randomness. The operational

semantics is deterministic in that it carries out evaluation under a single entropy value 𝜎 ∈ S. The
measure semantics then integrates evaluation over the entropy space. (An alternative, mentioned

in §8, is to use a trace space [Borgström et al. 2016] as the source of randomness.)

Definition 4.1 (Properties of an entropy space). An entropy space (S, ΣS, `S) is a probability space

equipped with a few measurable functions:

(1) 𝜋𝑈 : S → [0, 1] interprets an entropy value as a sample from the standard uniform distribu-

tion. That is, for any measurable function 𝑓 : [0, 1] → R+
,

∫
𝑓 (𝜋𝑈 𝜎) `S (d𝜎) =

∫
1

0

𝑓 (𝑟) d𝑟 .
(2) 𝜋𝐿 : S → S and 𝜋𝑅 : S → S split an entropy value into a pair of independent ones. That

is, for any measurable function 𝑓 : S × S → R+
,

∫
𝑓 (𝜋𝐿 𝜎, 𝜋𝑅 𝜎) d𝜎 =

∬
𝑓 (𝜎1, 𝜎2) d𝜎1 d𝜎2.

Therefore, a computation that samples two ormore uniform random variables under entropy𝜎

can split 𝜎 , use entropy 𝜋𝐿 𝜎 to draw the first sample, and perform the rest of the computation

under entropy 𝜋𝑅 𝜎 , thus ensuring that no entropy component is ever reused.

These properties form an abstract definition of an entropy space. We defer to Culpepper and Cobb

[2017] for instantiations of these properties on standard probability spaces (e.g., the countably

infinite product of unit intervals [0, 1]𝜔). This paper relies only on the properties specified above.

Operational semantics: small-step reduction. Reduction is of form ⟨𝜎 | 𝑒⟩ { ⟨𝜎 ′ | 𝑒 ′⟩ •𝑤 . A
configuration ⟨𝜎 | 𝑒⟩ consists of an entropy value and an expression. The entropy 𝜎 determines the

values that uniform samples take in the current execution. A reduction step produces a weight

factor𝑤 ∈ R+
capturing how the reduction step changes the probability of the current execution.

Figure 4 defines the small-step semantics. For now, step indices of reduction rules ({𝑛
, in

gray), as well as the highlighted rules qery and qery-exn, should be ignored, since they

have to do with nested queries. Rule fix shows that reducing (fix this. 𝑒) () essentially unrolls

the fixpoint. Rule op applies an 𝑚-ary operation op𝑚 per its built-in interpretation given by

interp
(
op𝑚, c𝑟1 , ..., c𝑟𝑚

)
. If interp (op𝑚, ...) is undefined on the real-valued arguments, evaluation is

stuck. To reduce sample Unif , rule unif splits the entropy into two disjoint parts: 𝜋𝐿 𝜎 is used to

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:9

evaluation contexts 𝐾 ::= [·] | 𝐾 𝑒 | 𝑣 𝐾 | fst𝐾 | snd𝐾 | if 𝐾 then 𝑒1 else 𝑒2 |
let x = 𝐾 in 𝑒 | op𝑛 (𝑣, 𝐾, 𝑒) | sample 𝐾 | score 𝐾

terms 𝑒 ::= . . . | exn

Small-step reduction: ⟨𝜎 | 𝑒⟩ {𝑛 ⟨𝜎 ′ | 𝑒 ′⟩ •𝑤 let ⟨𝜎 | let x = 𝑣 in 𝑒⟩ {𝑛 ⟨𝜎 | 𝑒 {𝑣/x}⟩ • 1

ktx

⟨𝜎 | 𝑒⟩ {𝑛 ⟨𝜎 ′ | 𝑒 ′⟩ •𝑤
⟨𝜎 |𝐾 [𝑒]⟩ {𝑛 ⟨𝜎 ′ |𝐾 [𝑒 ′]⟩ •𝑤

op

interp
(
op𝑚, c𝑟1 , ..., c𝑟𝑚

)
= 𝑣〈

𝜎
�� op𝑚 (

c𝑟1 , ..., c𝑟𝑚
)〉
{𝑛 ⟨𝜎 | 𝑣⟩ • 1

beta ⟨𝜎 | (_x . 𝑒) 𝑣⟩ {𝑛 ⟨𝜎 | 𝑒 {𝑣/x}⟩ • 1 fix ⟨𝜎 | (fix this. 𝑒) ()⟩ {𝑛 ⟨𝜎 | 𝑒 {fix this. 𝑒/this}⟩ • 1

fst ⟨𝜎 | fst (𝑣1, 𝑣2)⟩ {𝑛 ⟨𝜎 | 𝑣1⟩ • 1 then ⟨𝜎 | if True then 𝑒1 else 𝑒2⟩ {𝑛 ⟨𝜎 | 𝑒1⟩ • 1

snd ⟨𝜎 | snd (𝑣1, 𝑣2)⟩ {𝑛 ⟨𝜎 | 𝑣2⟩ • 1 else ⟨𝜎 | if False then 𝑒1 else 𝑒2⟩ {𝑛 ⟨𝜎 | 𝑒2⟩ • 1

unif

𝑟
def

= 𝜋𝑈 (𝜋𝐿 𝜎)
⟨𝜎 | sample Unif⟩ {𝑛 ⟨𝜋𝑅 𝜎 | c𝑟 ⟩ • 1

qery

`𝑛NS (𝑒) > 0

⟨𝜎 | sample (query 𝑒)⟩ {𝑛 ⟨𝜎 | 𝑒⟩ • 1

/
`𝑛NS (𝑒)

score

0 < 𝑟 ≤ 1

⟨𝜎 | score c𝑟 ⟩ {𝑛 ⟨𝜎 | ()⟩ • 𝑟
qery-exn

`𝑛NS (𝑒) = 0

⟨𝜎 | sample (query 𝑒)⟩ {𝑛 ⟨𝜎 | exn⟩ • 1

Evaluation: ⟨𝜎 | 𝑒⟩ ↘𝑛 ⟨𝜎 ′ | 𝑒 ′⟩ •𝑤

eval-val ⟨𝜎 | 𝑣⟩ ↘𝑛+1 ⟨𝜎 | 𝑣⟩ • 1

eval-exn ⟨𝜎 |𝐾 [exn]⟩ ↘𝑛+1 ⟨𝜎 |𝐾 [exn]⟩ • 1

eval-stop ⟨𝜎 | 𝑒⟩ ↘0 ⟨𝜎 | 𝑒⟩ • 1

eval-step

⟨𝜎 | 𝑒⟩ {𝑛 ⟨𝜎 ′ | 𝑒 ′⟩ •𝑤
⟨𝜎 ′ | 𝑒 ′⟩ ↘𝑛 ⟨𝜎 ′′ | 𝑒 ′′⟩ •𝑤 ′

⟨𝜎 | 𝑒⟩ ↘𝑛+1 ⟨𝜎 ′′ | 𝑒 ′′⟩ •𝑤 ·𝑤 ′

interp
(
op𝑚, c𝑟1 , ..., c𝑟𝑚

)
= 𝑣 or Undefined interp (log, c𝑟) =

{
clog 𝑟 if 𝑟 > 0

Undefined otherwise

...

Figure 4. Operational semantics. In §4.1, highlighted rules and step indices of{𝑛 should be disregarded. §4.2
adds nested queries, rendering{𝑛 , ↘𝑛 , and `𝑛NS (Figure 5) mutually recursive.

generate the standard uniform sample, while 𝜋𝑅 𝜎 is used as the entropy source for the rest of the

computation.

Per rule score, score c𝑟 multiplies the weight by 𝑟 , provided 0 < 𝑟 ≤ 1; otherwise, evaluation

is stuck. The requirement of 𝑟 ≤ 1 is inherited from Borgström et al. [2016] and Szymczak and

Katoen [2019]. Borgström et al. show that scoremay cause probabilistic programs with recursion to

have ill-defined model evidence, even when scoring is statically bounded and programs otherwise

terminate almost surely. Borgström et al. and Szymczak and Katoen then reconcile this tension

between scoring and recursion using 1-bounded score (see also §8).

As is usual, the small-step semantics is inductively defined; rule ktx is the basis for structural

induction [Felleisen and Hieb 1992]. The small-step semantics is deterministic: a configuration is

either irreducible or can be reduced to a unique next configuration and produce a unique weight.

Whether a configuration ⟨𝜎 | 𝑒⟩ is irreducible depends solely on the term 𝑒 .

Operational semantics: evaluation. The evaluation relation has form ⟨𝜎 | 𝑒⟩ ↘𝑛 ⟨𝜎 ′ | 𝑒 ′⟩ •𝑤 . It

states that configuration ⟨𝜎 | 𝑒⟩ evaluates to ⟨𝜎 ′ | 𝑒 ′⟩ under step budget 𝑛 and produces weight𝑤 .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

16:10 Yizhou Zhang and Nada Amin

𝜌𝑛TV (𝜎, 𝑒,𝑉)
def

=

{
𝑤 if ⟨𝜎 | 𝑒⟩ ↘𝑛 ⟨𝜎 ′ | 𝑣⟩ •𝑤 ∧ 𝑣 ∈ 𝑉
0 otherwise

`𝑛TV (𝑒,𝑉)
def

=

∫
𝜌𝑛TV (𝜎, 𝑒,𝑉) `S (d𝜎)

𝜌𝑛NS (𝜎, 𝑒)
def

=

{
𝑤 if ⟨𝜎 | 𝑒⟩ ↘𝑛 ⟨𝜎 ′ | 𝑒 ′⟩ •𝑤
0 otherwise

`𝑛NS (𝑒)
def

=

∫
𝜌𝑛NS (𝜎, 𝑒) `S (d𝜎)

Figure 5. Step-indexed measure semantics

Figure 4 presents evaluation using inference rules, but it can be defined algorithmically as a

recursive function, indexed on the step budget. At index 0, no reduction is allowed (eval-stop).

At index 𝑛 + 1, if the term is terminal, evaluation is a no-op (eval-val and eval-exn). Terminal

terms include values and exceptions (signaling zero model evidence, §4.2). Otherwise, if it is

possible to make a reduction step, then evaluation recurses on the next configuration with the index

decremented (eval-step). The total weight is the product of weights produced by the reduction

step and the recursive evaluation. Evaluation is partial: it is undefined when there is step budget

left but the term is stuck. Notice that being stuck and being terminal are disjoint events.

Step-indexed measures. The measure semantics integrates evaluation with respect to the stock

measure `S, capturing the aggregate behavior of programs over the entropy space (S, ΣS, `S).
Define 𝜌𝑛TV (𝜎, 𝑒,𝑉), as Figure 5 shows. It has value𝑤 if evaluation of ⟨𝜎 | 𝑒⟩ terminates to a value

𝑣 ∈ 𝑉 within 𝑛 steps and produces weight𝑤 . Integrating 𝜌𝑛TV (𝜎, 𝑒,𝑉) with respect to `S induces a

measure `𝑛TV (𝑒,𝑉) over (V, ΣV), the measurable space of syntactic values. The quantity `𝑛TV (𝑒,𝑉) is
the unnormalized probability of 𝑒 terminating to a value under step budget 𝑛.

The normalized probability is given by `𝑛TV (𝑒,𝑉)
/
`𝑛NS (𝑒) . The denominator `𝑛NS (𝑒) is the model

evidence of 𝑒 when the step budget is 𝑛. Defined in Figure 5, it is the integration of 𝜌𝑛NS (𝜎, 𝑒) with
respect to `S. By definition, 𝜌𝑛TV (𝜎, 𝑒,𝑉) ≤ 𝜌𝑛NS (𝜎, 𝑒), since 𝜌𝑛NS (𝜎, 𝑒) assigns a positive weight as
long as evaluation of ⟨𝜎 | 𝑒⟩ does not get stuck within 𝑛 steps. It follows that `𝑛TV (𝑒,𝑉) ≤ `𝑛NS (𝑒).

Stuck terms have zero weight. In particular, score c0 is stuck, so we can use score c0 to express

hard constraints, as Figure 1 does.

The measurable space of values (V, ΣV), as well as that of terms, is constructed by taking the

𝜎-algebra to be the Borel-measurable sets with respect to a metric. Measurability proofs of the

integrand functions are tedious but follow the approach of Borgström et al. [2016, Fig. 5 & §A],

Wand et al. [2018, §A], and Szymczak and Katoen [2019, §F].

Limit measures. The meaning of a probabilistic program is characterized, ultimately, by the

distribution of its eventual evaluation outcomes—that is, its measure semantics when the step

budget 𝑛 is taken to infinity. Before we can take the limit of the step-indexed approximants, we

must make sure that their limits exist.

We can show `𝑛TV (𝑒,𝑉) are `𝑛NS (𝑒) are monotonic in 𝑛 by showing their integrands are monotonic:

• 𝜌𝑛TV (𝜎, 𝑒,𝑉) is nondecreasing because it is 0 when evaluation of ⟨𝜎 | 𝑒⟩ does not reach a value

𝑣 ∈ 𝑉 within 𝑛 steps and because it becomes a constant once ⟨𝜎 | 𝑒⟩ evaluates to a value.

• 𝜌𝑛NS (𝜎, 𝑒) is nonincreasing because no reduction rule other than score changes the weight and

because scores are bounded by 1.

So `𝑛TV (𝑒,𝑉) is nondecreasing and `𝑛NS (𝑒) is nonincreasing. By themonotone convergence theorem (I),

their limits are well-defined:

`NS (𝑒)
def

= lim

𝑛→∞
`𝑛NS (𝑒) = inf

𝑛

{
`𝑛NS (𝑒)

}
`TV (𝑒,𝑉)

def

= lim

𝑛→∞
`𝑛TV (𝑒,𝑉) = sup

𝑛

{
`𝑛TV (𝑒,𝑉)

}
Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:11

Notice that the difference `NS (𝑒) − `TV (𝑒,V) is the (unnormalized) measure of unusual evaluation
outcomes (namely exceptions and divergence); we follow Bichsel et al. [2018] and Szymczak and

Katoen [2019] in distinguishing them from stuck computations and giving them measure. If a

program 𝑒 almost surely terminates to values, then `TV (𝑒,V) = `NS (𝑒). Also notice that to ensure

the well-definedness of `NS (𝑒), scores are required to be bounded by 1, a formalization decision

inherited from Borgström et al. [2016] and Szymczak and Katoen [2019] (see also §8). Hitherto, the

development is standard, in the absence of query.

4.2 Semantics in the Presence of NestedQueries
Normalization. If we view query as reifying a probabilistic program, then sampling it reflects the
program, as rule qery (Figure 4) shows. Importantly, the reduction rule normalizes the weight of

a reflective, nesting execution by the model evidence of the reflected, nested term. While it makes

sense to consider only unnormalized probabilities in prior semantics [Culpepper and Cobb 2017;

Wand et al. 2018], the presence of nested queries makes it impossible to sidestep model evidence.

Mutual recursion between operational semantics and measure semantics. Normalization in-

vokes the measure semantics, breaking the stratification of the two semantics. Whereas §4.1 defines

the measure semantics only after the operational semantics comes into existence, normalization

forces the two semantics to be mutually recursive.

The meaning of an inference query is characterized by its measure semantics under a large

enough step budget. So a naive way to define ruleqery would be to evaluate the nested program 𝑒

under step budget ∞ and use lim𝑛→∞ `
𝑛
NS (𝑒) as the normalization factor. However, we are not

licensed to take the limit of the step-indexed approximants while the very approximants are being

defined. We could perhaps avoid taking limits by restricting attention to programs that terminate in

finite steps, but the restriction would reject useful programs that terminate a.s. (e.g., the recursive

encoding of geometric distributions and infinite-horizon MDPs with absorbing states), let alone

programs with positive nontermination measure.

To handle nonterminating executions and tie the recursive knot properly, small-step reduction is

step-indexed too: ⟨𝜎 | 𝑒⟩ {𝑛 ⟨𝜎 ′ | 𝑒 ′⟩ •𝑤 , where 𝑛 means there are at most 𝑛 allowable steps left

after this step takes place. Accordingly, to ensure the evaluation function remains well-founded,

rule eval-step (at index 𝑛 + 1) invokes small-step reduction at a lower index 𝑛: small-step reduction

will possibly invoke the measure semantics at index 𝑛, which will in turn invoke the evaluation

function at index 𝑛.

With this indexingmethod, the index in the operational semantics governs not only the remaining

step budget at the current level of evaluation, but also that at lower, reflected levels. Alternatively,

we could have used a different index structure consisting of an index governing the remaining

step budget at the current level, an index governing the remaining reflection-level budget, and the

initial step budget at each level. Going to the reflected level below causes the second index to be

decremented but resets the first index. This indexing method could ensure well-foundedness too,

through a lexicographic order on the index structure. The two indexing methods result in identical

measures when budgets are taken to infinity. We choose the simpler one.

It remains to be shown that limits of measures exist (Theorem 4.2 and §4.3).

Model-evidence exceptions. Normalization is ill-defined when the normalization factor is zero.

Hence, ruleqery requires that the step-indexed model evidence `𝑛NS (𝑒) be positive. When `𝑛NS (𝑒) =
0, ruleqery-exn takes over: it sends the configuration to exn, signaling a zero-model-evidence

exception. Executions leading to exn has positive weight; we consider this evaluation outcome

unusual but not unexpected.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

16:12 Yizhou Zhang and Nada Amin

Limit measures. An inconvenient consequence of adding nested queries is that integrand 𝜌𝑛NS (𝜎, 𝑒)
of the measure semantics is no longer monotonic. The loss of this monotonicity makes it much

more challenging than in §4.1 (and in prior work) to show that the sequence

{
`𝑛NS (𝑒)

}
𝑛∈N always

converges via the monotone convergence theorem.

It can be seen as follows why 𝜌𝑛NS (𝜎, 𝑒) is not necessarily monotonic. We know from §4.1 that the

step-indexed `𝑛NS (𝑒 ′) is nonincreasing if 𝑒 ′ does not further nest queries. However, it also means

that the weight 𝜌𝑛NS (𝜎, 𝑒) of a configuration ⟨𝜎 | 𝑒⟩ which steps to sample (query 𝑒 ′) may increase

as 𝑛 increases, since the weight is normalized by the nonincreasing `𝑛NS (𝑒 ′) per ruleqery.

In fact, 𝜌𝑛NS (𝜎, 𝑒) does not even necessarily converge—let alone not increase—for a nonterminating

configuration ⟨𝜎 | 𝑒⟩; the accompanying technical report [Zhang and Amin 2021] gives an example.

Does the integral `𝑛NS (𝑒) =
∫
𝜌𝑛NS (𝜎, 𝑒) d𝜎 still converge?We answer this question in the affirmative.

In fact, we prove it remains nonincreasing, so the monotone convergence theorem can still be used

to show that lim𝑛→∞ `
𝑛
NS (𝑒) exists. The intuition is that although the normalization factor `𝑛NS (𝑒 ′)

may decrease as 𝑛 increases, the unnormalized weight of an execution of 𝑒 ′ may decrease too,

allowing the measure `𝑛NS (𝑒) of a nesting computation 𝑒 to not increase. Nevertheless, this intuition

is rather equivocal and materializing it necessarily demands that induction hypotheses be chosen

carefully to untangle the convoluted mutual recursion in the definition of the semantics. It is a

main goal of §4.3 to prove that `𝑛NS (𝑒) remains nonincreasing:

Theorem 4.2. For all 𝑒 and 𝑉 , if 𝑚 ≤ 𝑛, then `𝑚TV (𝑒,𝑉) ≤ `𝑛TV (𝑒,𝑉) and `𝑚NS (𝑒) ≥ `𝑛NS (𝑒). It follows
from MCT (I) that the limit measures are well-defined:

`TV (𝑒,𝑉)
def

= lim

𝑛→∞
`𝑛TV (𝑒,𝑉) = sup

𝑛

{
`𝑛TV (𝑒,𝑉)

}
`NS (𝑒)

def

= lim

𝑛→∞
`𝑛NS (𝑒) = inf

𝑛

{
`𝑛NS (𝑒)

}
Definition 4.3. Let `𝑛NV (𝑒)

def

= `𝑛NS (𝑒) − `𝑛TV (𝑒,V). It follows from Theorem 4.2 that `𝑛NV (𝑒) is mono-

tonically nonincreasing and has limit `NV (𝑒)
def

= lim𝑛→∞ `
𝑛
NV (𝑒) = `NS (𝑒) − `TV (𝑒,V). `𝑛NV (𝑒) is the

unnormalized measure of those executions of 𝑒 that evaluate to a non-value under step budget 𝑛.

As mentioned in §4.1, its limit `NV (𝑒) is the unnormalized measure of unusual evaluation outcomes.

4.3 Properties of the Semantics
We first establish basic facts about the step-indexed semantics defined in §4.2.

Lemma 4.4. 0 ≤ `𝑛TV (𝑒,𝑉) ≤ `𝑛NS (𝑒) ≤ 1.

Lemma 4.5. `0NS (𝑒) = 1.

Lemma 4.6. If 𝑒 is terminal, then `𝑛NS (𝑒) = 1.

Lemma 4.7. If 𝑒 is stuck, then `𝑛NS (𝑒) = 0.

Lemma 4.8. `𝑛NS (𝐾 [𝑒]) ≤ `𝑛NS (𝑒).
Lemma 4.9. If ⟨𝜎 | 𝑒⟩ {𝑛 ⟨𝜎 | 𝑒 ′⟩ •𝑤 for all 𝜎 , then `𝑛+1NS (𝑒) = 𝑤 · `𝑛NS (𝑒 ′).
Lemma 4.10. If ⟨𝜎 | 𝑒⟩ {𝑛 ⟨𝜎 | 𝑒 ′⟩ •𝑤 for all 𝜎 , then `𝑛+1TV (𝑒,𝑉) = 𝑤 · `𝑛TV (𝑒 ′,𝑉).
Lemma 4.11. `𝑛+1NS (𝐾 [sample Unif]) =

∫
1

0

`𝑛NS (𝐾 [c𝑟]) d𝑟 .
Lemma 4.12. `𝑛+1TV (𝐾 [sample Unif],𝑉) =

∫
1

0

`𝑛TV (𝐾 [c𝑟],𝑉) d𝑟 .

Lemmas 4.9–4.12 characterize how measures evolve under small-step reduction. Lemmas 4.9 and

4.10 apply when reduction is independent of entropy—that is, when 𝑒 is not of form𝐾 [sample Unif].
Lemmas 4.11 and 4.12 involve integration with respect to the Lebesgue measure over R, because
reducing the redex sample Unif involves randomness; their proofs rely on Definition 4.1.

The measure monotonicity proof employs a few more definitions.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:13

Definition 4.13. Define a partial, measurable evaluation function of form ⟨𝜎 | 𝑒⟩ ↘𝑛
𝑘 ⟨𝜎 ′ | 𝑣⟩ •𝑤 :

⟨𝜎 | 𝑣⟩ ↘𝑛
0
⟨𝜎 | 𝑣⟩ • 1

⟨𝜎 | 𝑒⟩ {𝑛 ⟨𝜎 ′ | 𝑒 ′⟩ •𝑤 ⟨𝜎 ′ | 𝑒 ′⟩ ↘𝑛
𝑘 ⟨𝜎 ′′ | 𝑣⟩ •𝑤 ′

⟨𝜎 | 𝑒⟩ ↘𝑛+1
𝑘+1 ⟨𝜎 ′′ | 𝑣⟩ •𝑤 ·𝑤 ′

This evaluation function takes as input ⟨𝜎 | 𝑒⟩ and 𝑛. It differs from the one in Figure 4 in two ways.

First, it is defined only on configurations that terminate to a value under the given step budget.

Second, it additionally returns the number of actual steps taken (i.e., 𝑘 in ⟨𝜎 | 𝑒⟩ ↘𝑛
𝑘 ⟨𝜎 ′ | 𝑣⟩ •𝑤).

Definition 4.14. Define b using the evaluation function of Definition 4.13:

b𝑛 (𝜎, 𝐾, 𝑒) def

=

{
𝑤 · `𝑛−𝑘NS (𝐾 [𝑣]) if ⟨𝜎 | 𝑒⟩ ↘𝑛

𝑘 ⟨𝜎 ′ | 𝑣⟩ •𝑤
0 otherwise

Lemma 4.15. `𝑛NS (𝐾 [𝑒]) = `𝑛NV (𝑒) +
∫
b𝑛 (𝜎, 𝐾, 𝑒) d𝜎 .

The intuition behind Definition 4.14 and Lemma 4.15 is that evaluation of ⟨𝜎 |𝐾 [𝑒]⟩ can be divided

into two stages: first evaluating ⟨𝜎 | 𝑒⟩ to a value ⟨𝜎 ′ | 𝑣⟩ in 𝑘 steps, and then evaluating 𝐾 [𝑣] under
remaining step budget 𝑛 − 𝑘 using fresh entropy independent of the leftover entropy 𝜎 ′

.

Now we are ready to establish measure monotonicity:

Lemma 4.16. The following statements hold:

(1) If ⟨𝜎 | 𝑒⟩ {𝑛+1 ⟨𝜎 ′ | 𝑒1⟩ •𝑤1, then there exist 𝑒0 and𝑤0 such that ⟨𝜎 | 𝑒⟩ {𝑛 ⟨𝜎 ′ | 𝑒0⟩ •𝑤0.

(2) If ⟨𝜎 | 𝑒⟩ ↘𝑛
𝑘0

⟨𝜎0 | 𝑣0⟩ •𝑤0 and ⟨𝜎 | 𝑒⟩ ↘𝑛+1
𝑘1

⟨𝜎1 | 𝑣1⟩ •𝑤1, then 𝜎0 = 𝜎1, 𝑘0 = 𝑘1, 𝑣0 = 𝑣1, and
𝑤0 ≤ 𝑤1.

(3)
∫
𝜌𝑛TV (𝜎, 𝑒,V) · 1𝜌𝑛+1TV (𝜎,𝑒,V)=0 d𝜎 = 0.

(4) `𝑛TV (𝑒,𝑉) ≤ `𝑛+1TV (𝑒,𝑉).
(5) `𝑛NS (𝑒) ≥ `𝑛+1NS (𝑒).

The lemma statement is carefully engineered to unravel the mutual recursion among the small-

step semantics (1), the evaluation function (2)(3), and the measure semantics (4)(5). As a whole,

Lemma 4.16 is proven by

(i) first showing that (1) holds provided that (5) holds, and

(ii) then showing that (2)(3)(4)(5) simultaneously hold by induction on 𝑛.

The induction hypotheses of (ii) include the statements of (2)(3)(4)(5) at lower step indices. The

proof of (ii) uses (i), instantiating (i) using the induction hypothesis given by (5).

Like 𝜌𝑛NS (𝜎, 𝑒), 𝜌𝑛TV (𝜎, 𝑒,𝑉) is in general nonmonotonic in the presence of nested queries. Suppose

that at index 𝑛, configuration ⟨𝜎 |𝐾 [sample (query 𝑒 ′)]⟩ is reduced per rule qery. Then at a

higher index 𝑛 + 1, the configuration may be reduced differently viaqery-exn if `𝑛NS (𝑒 ′) = 0. Thus,

it is not always true that if ⟨𝜎 | 𝑒⟩ ↘𝑛 ⟨𝜎 ′ | 𝑣⟩ • 𝑤 then ⟨𝜎 | 𝑒⟩ still terminates to a value under a

larger step budget 𝑛 + 1. However, we can show that it is almost always true, as stated by (3).

Proof Excerpt of Lemma 4.16. Here we show that (5) `𝑛NS (𝑒) ≥ `𝑛+1NS (𝑒) holds under the follow-
ing hypotheses, where H1 corresponds to (i), and H2, H3, H4, and H5 are the induction hypotheses

of (ii):

H1. For all𝑚, if `𝑚NS (𝑒) ≥ `𝑚+1
NS (𝑒) and ⟨𝜎 | 𝑒⟩ {𝑚+1 ⟨𝜎 ′ | 𝑒1⟩ •𝑤1, then there exist 𝑒0 and𝑤0 such

that ⟨𝜎 | 𝑒⟩ {𝑚 ⟨𝜎 ′ | 𝑒0⟩ •𝑤0.

H2. For all 𝑚 < 𝑛, if ⟨𝜎 | 𝑒⟩ ↘𝑚
𝑘0

⟨𝜎0 | 𝑣0⟩ • 𝑤0 and ⟨𝜎 | 𝑒⟩ ↘𝑚+1
𝑘1

⟨𝜎1 | 𝑣1⟩ • 𝑤1, then 𝜎0 = 𝜎1,

𝑘0 = 𝑘1, 𝑣0 = 𝑣1, and𝑤0 ≤ 𝑤1.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

16:14 Yizhou Zhang and Nada Amin

H3. For all𝑚 < 𝑛,
∫
𝜌𝑚TV (𝜎, 𝑒,V) · 1𝜌𝑚+1

TV (𝜎,𝑒,V)=0 d𝜎 = 0.

H4. For all𝑚 < 𝑛, `𝑚TV (𝑒,𝑉) ≤ `𝑚+1
TV (𝑒,𝑉).

H5. For all𝑚 < 𝑛, `𝑚NS (𝑒) ≥ `𝑚+1
NS (𝑒).

When 𝑛 = 0, our goal follows from Lemmas 4.4 and 4.5. Below we consider the case 𝑛 ≥ 1. There

are three situations: 𝑒 is terminal, 𝑒 is stuck at index 𝑛 − 1, and 𝑒 is reducible at index 𝑛 − 1.

If 𝑒 is terminal, our goal follows from Lemma 4.6.

If 𝑒 is stuck at index 𝑛 − 1, then `𝑛NS (𝑒) = 0 by Lemma 4.7. So we need to show `𝑛+1NS (𝑒) = 0,

too. By Lemma 4.7, it suffices to show that 𝑒 is stuck at index 𝑛. By induction hypothesis H5,

`𝑛−1NS (𝑒) ≥ `𝑛NS (𝑒). Using this result to instantiate hypothesis H1, we have that 𝑒 is reducible at index
𝑛 − 1 if 𝑒 is reducible at index 𝑛. Since 𝑒 is irreducible at index 𝑛 − 1, it follows that 𝑒 is irreducible

at index 𝑛. Further, since 𝑒 is not terminal, 𝑒 must be stuck at index 𝑛.

Otherwise, 𝑒 is reducible at index 𝑛 − 1. This reduction step can be categorized into three cases:

(a) 𝑒 is of form 𝐾 [sample (query 𝑒 ′)], where reduction depends on the step index;

(b) 𝑒 is of form 𝐾 [sample Unif], where reduction depends on the entropy; and

(c) 𝑒 is of some other form, where reduction is independent of the step index or the entropy.

In case (c), the goal follows from Lemma 4.9. In case (b), the goal follows from Lemma 4.11

and induction hypothesis H5. Case (a) contains two subcases: `𝑛−1NS (𝑒 ′) = 0 and `𝑛−1NS (𝑒 ′) > 0.

If `𝑛−1NS (𝑒 ′) = 0, then rule qery-exn is in charge and the goal follows from Lemma 4.9 and

hypothesis H5. Below we focus on the second subcase of (a). In this subcase we have

for all 𝜎, ⟨𝜎 |𝐾 [sample (query 𝑒 ′)]⟩ {𝑛−1 ⟨𝜎 |𝐾 [𝑒 ′]⟩ • 1

/
`𝑛−1NS (𝑒 ′) (4.1)

`𝑛NS (𝑒) = `𝑛−1NS (𝐾 [𝑒 ′])
/
`𝑛−1NS (𝑒 ′) (4.2)

where (4.2) follows from (4.1) and Lemma 4.9. Now, we have two situations depending on `𝑛NS (𝑒 ′).
• Case `𝑛NS (𝑒 ′) = 0. It suffices to show `𝑛−1NS (𝐾 [𝑒 ′]) = `𝑛−1NS (𝑒 ′): when the equality holds, `𝑛NS (𝑒) = 1

by (4.2), and thus `𝑛NS (𝑒) ≥ `𝑛+1NS (𝑒) by Lemma 4.4. Notice that we have `𝑛−1TV (𝑒 ′,V) = 0:

`𝑛−1TV (𝑒 ′,V) ≤ `𝑛TV (𝑒 ′,V) ≤ `𝑛NS (𝑒 ′) = 0

where the first inequality is by induction hypothesis H4 and the second is by Lemma 4.4. So

`𝑛−1NV (𝑒 ′) = `𝑛−1NS (𝑒 ′) − `𝑛−1TV (𝑒 ′,V) = `𝑛−1NS (𝑒 ′). Thus, the goal `𝑛−1NS (𝐾 [𝑒 ′]) = `𝑛−1NV (𝑒 ′) follows from

`𝑛−1NV (𝑒 ′) = `𝑛−1NS (𝑒 ′) ≥ `𝑛−1NS (𝐾 [𝑒 ′]) ≥ `𝑛−1NV (𝑒 ′)

where the first inequality is by Lemma 4.8 and the second is by Lemma 4.15.

• Case `𝑛NS (𝑒 ′) > 0. This case requires the most ingenuity. In this case, we have

for all 𝜎, ⟨𝜎 |𝐾 [sample (query 𝑒 ′)]⟩ {𝑛 ⟨𝜎 |𝐾 [𝑒 ′]⟩ • 1

/
`𝑛NS (𝑒 ′)

`𝑛+1NS (𝑒) = `𝑛NS (𝐾 [𝑒 ′])
/
`𝑛NS (𝑒 ′)

So the goal is to show `𝑛−1NS (𝐾 [𝑒 ′])
/
`𝑛−1NS (𝑒 ′) ≥ `𝑛NS (𝐾 [𝑒 ′])

/
`𝑛NS (𝑒 ′) . By induction hypothesis

H5, we have `𝑛−1NS (𝐾 [𝑒 ′]) ≥ `𝑛NS (𝐾 [𝑒 ′]) for the numerators, but we also have `𝑛−1NS (𝑒 ′) ≥ `𝑛NS (𝑒 ′)
for the denominators—a seeming dilemma. We rewrite the goal using Lemma 4.15, with the

evaluation context instantiated by 𝐾 for the numerators and by [·] for the denominators:

`𝑛−1NV (𝑒 ′) +
∫
b𝑛−1 (𝜎, 𝐾, 𝑒 ′) d𝜎

`𝑛−1NV (𝑒 ′) +
∫
b𝑛−1 (𝜎, [·], 𝑒 ′) d𝜎

≥
`𝑛NV (𝑒 ′) +

∫
b𝑛 (𝜎, 𝐾, 𝑒 ′) d𝜎

`𝑛NV (𝑒 ′) +
∫
b𝑛 (𝜎, [·], 𝑒 ′) d𝜎

(4.3)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:15

The integrals on the RHS of (4.3) can be further decomposed, using b< and b= defined as follows:

b𝑛< (𝜎, 𝐾, 𝑒)
def

=

{
𝑤 · `𝑛−𝑘NS (𝐾 [𝑣]) if ⟨𝜎 | 𝑒⟩ ↘𝑛

𝑘 ⟨𝜎 ′ | 𝑣⟩ •𝑤 and 𝑘 < 𝑛

0 otherwise

b𝑛= (𝜎, 𝑒)
def

=

{
𝑤 if ⟨𝜎 | 𝑒⟩ ↘𝑛

𝑘 ⟨𝜎 ′ | 𝑣⟩ •𝑤 and 𝑘 = 𝑛

0 otherwise

By Definition 4.14, b𝑛 (𝜎, 𝐾, 𝑒) = b𝑛= (𝜎, 𝑒) + b𝑛< (𝜎, 𝐾, 𝑒): b𝑛 (𝜎, 𝐾, 𝑒) is b𝑛= (𝜎, 𝑒) when ⟨𝜎 | 𝑒⟩ termi-

nates to a value in precisely 𝑛 steps, and b𝑛 (𝜎, 𝐾, 𝑒) is b𝑛< (𝜎, 𝐾, 𝑒) when ⟨𝜎 | 𝑒⟩ terminates to a

value in fewer than 𝑛 steps. Notice that b𝑛< (𝜎, 𝐾, 𝑒) is closely related to, but subtly different from,

b𝑛−1 (𝜎, 𝐾, 𝑒): both allow a maximum of 𝑛 − 1 evaluation steps at the current level of evaluation,

but b𝑛< (𝜎, 𝐾, 𝑒) allows for one more step at lower, reflected levels than b𝑛−1 (𝜎, 𝐾, 𝑒) does. Now,
rewrite (4.3) by decomposing b𝑛 (𝜎, 𝐾, 𝑒 ′) and b𝑛 (𝜎, [·], 𝑒 ′) on its RHS:

`𝑛−1NV (𝑒 ′) +
∫
b𝑛−1 (𝜎, 𝐾, 𝑒 ′) d𝜎

`𝑛−1NV (𝑒 ′) +
∫
b𝑛−1 (𝜎, [·], 𝑒 ′) d𝜎

≥
`𝑛NV (𝑒 ′) +

∫
b𝑛= (𝜎, 𝑒 ′) d𝜎 +

∫
b𝑛< (𝜎, 𝐾, 𝑒 ′) d𝜎

`𝑛NV (𝑒 ′) +
∫
b𝑛= (𝜎, 𝑒 ′) d𝜎 +

∫
b𝑛< (𝜎, [·], 𝑒 ′) d𝜎

(4.4)

The decomposition allows for connecting the LHS’s b𝑛−1 (𝜎, 𝐾, 𝑒 ′) and b𝑛−1 (𝜎, [·], 𝑒 ′) to the RHS’s
b𝑛< (𝜎, 𝐾, 𝑒 ′) and b𝑛< (𝜎, [·], 𝑒 ′). It also allows for connecting `𝑛−1NV (𝑒 ′) on the LHS to `𝑛NV (𝑒 ′) +∫
b𝑛= (𝜎, 𝑒 ′) d𝜎 on the RHS, both of which, roughly speaking, are the measure of 𝑒 ′ evaluating to a

non-value after 𝑛 − 1 steps. Then we can prove (4.4) by applying the following fact

∀𝛼 𝛽 𝛾 𝛼 ′ 𝛽 ′𝛾 ′ ∈ R+, 0 ≤ 𝛾 − 𝛽 ≤ 𝛾 ′ − 𝛽 ′ ⇒ 𝛼 ′ + 𝛾 ′ ≤ 𝛼 + 𝛾 < ∞ ⇒ 𝛼 + 𝛽
𝛼 + 𝛾 ≥ 𝛼 ′ + 𝛽 ′

𝛼 ′ + 𝛾 ′ (4.5)

with 𝛼 = `𝑛−1NV (𝑒 ′), 𝛼 ′ = `𝑛NV (𝑒 ′) +
∫
b𝑛= (𝜎, 𝑒 ′) d𝜎 , 𝛽 =

∫
b𝑛−1 (𝜎, 𝐾, 𝑒 ′) d𝜎 , and 𝛽 ′ =

∫
b𝑛< (𝜎, 𝐾, 𝑒 ′) d𝜎 .

This step applying (4.5) is what makes the equivocal intuition mentioned in §4.2 unequivocal.

Showing that the antecedents of (4.5) hold is then an exercise of real analysis making use of

induction hypotheses H2, H3, and H5; the proof is not shown here to save space. □

The main result of this section, Theorem 4.2, is immediate from Lemma 4.16(4)(5).

It follows from Theorem 4.2 and MCT (I) that index-free versions of Lemmas 4.9 and 4.10 hold:

Lemma 4.17. If ⟨𝜎 | 𝑒⟩ {𝑛 ⟨𝜎 | 𝑒 ′⟩ •𝑤 for all 𝜎 and 𝑛, then `NS (𝑒) = 𝑤 · `NS (𝑒 ′).
Lemma 4.18. If ⟨𝜎 | 𝑒⟩ {𝑛 ⟨𝜎 | 𝑒 ′⟩ •𝑤 for all 𝜎 and 𝑛, then `TV (𝑒,𝑉) = 𝑤 · `TV (𝑒 ′,𝑉).
Lemma 4.19. If `NS (𝑒) > 0, then `NS (𝐾 [sample (query 𝑒)]) = `NS (𝐾 [𝑒])

/
`NS (𝑒) .

Lemma 4.20. If `NS (𝑒) > 0, then `TV (𝐾 [sample (query 𝑒)],𝑉) = `TV (𝐾 [𝑒],𝑉)
/
`NS (𝑒) .

Lemmas 4.17 and 4.18 apply when reduction is independent of both entropy and step index.

Lemmas 4.19 and 4.20 apply when reduction depends on the step index.

Likewise, it follows from Theorem 4.2 and MCT (II) that index-free versions of Lemmas 4.11 and

4.12 hold too; Lemmas 4.21 and 4.22 apply when reduction depends on the entropy:

Lemma 4.21. `NS (𝐾 [sample Unif]) =
∫

1

0

`NS (𝐾 [c𝑟]) d𝑟 .
Lemma 4.22. `TV (𝐾 [sample Unif],𝑉) =

∫
1

0

`TV (𝐾 [c𝑟],𝑉) d𝑟 .

4.4 Implementation in Coq
We formalized themutually recursive operational semantics andmeasure semantics andmechanized

proofs of the above results using the Coq proof assistant, in about 4,400 lines of Gallina and Ltac code.

The development builds on an axiomatization of R+
and Lebesgue integration, due to Culpepper

and Cobb [2017], which further builds on the axiomatization of R [Mayero 2001] in the standard

library of Coq.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

16:16 Yizhou Zhang and Nada Amin

5 CONTEXTUAL EQUIVALENCE
The canonical, operational notion of equivalence is contextual equivalence [Morris 1968]. A program
context is a program with a hole [·] in it. Unlike evaluation contexts 𝐾 , program contexts can bind

variables and can be plugged with terms in which the variables occur free. Context typing has form

⊢ 𝐶 : Γ, 𝜏 ⇝ 𝜏 ′, so defined that if term 𝑒 has typing Γ ⊢ 𝑒 : 𝜏 , composing 𝐶 and 𝑒 yields a program

𝐶 [𝑒] with typing · ⊢ 𝐶 [𝑒] : 𝜏 ′. The definition of contexts and context-typing rules are standard and

can be found in the Coq development.

Given a notion of indistinguishability, two terms are contextually equivalent if respectively

composing them with any well-formed program context yields programs that are indistinguishable.

For a deterministic, Turing-complete language, indistinguishability is often taken to mean that

programs either both terminate or both diverge. If any two programs both terminate but terminate

to different values, there must exist a context in which one of the programs terminates and the

other diverges—it follows from the universal quantification over contexts that the two programs

are not considered contextually equivalent.

For our probabilistic, Turing-complete language, we take indistinguishability to mean (1) that

two programs have the same model evidence and (2) that they have the same measure on any

measurable set of real values. Formally, contextual equivalence (≈ctx) is defined as follows:

Definition 5.1 (Contextual equivalence).

Γ ⊨ 𝑒1 ≈ctx 𝑒2 : 𝜏
def

= ∀𝐶 ⊢ 𝐶 : Γ, 𝜏 ⇝ R ⇒
`NS (𝐶 [𝑒1]) = `NS (𝐶 [𝑒2]) ∧ ∀𝑉 `TV (𝐶 [𝑒1],𝑉) = `TV (𝐶 [𝑒2],𝑉)

Condition (2) alone is exactly how prior work [Wand et al. 2018] defines indistinguishability. Notice

that restricting attention to real-typed programs does not weaken the discriminating power of con-

textual equivalence, similar to how restricting attention to unit-typed programs in a deterministic

setting is not less discriminative. The addition of condition (1) makes our definition of contextual

equivalence more discriminative—it more faithfully reflects the meaning of probabilistic programs

when exceptions or divergence is possible [Bichsel et al. 2018; Olmedo et al. 2018] (see also §8).

We can define an asymmetric relation called contextual approximation (≼ctx), where the step-
indexed measure semantics of one program approximates the limit measure semantics of the other.

It follows from Theorem 4.2 that contextual equivalence has an alternative definition in terms of

contextual approximation:

Definition 5.2 (Contextual approximation).

Γ ⊨ 𝑒1 ≼ctx 𝑒2 : 𝜏
def

= ∀𝐶 ⊢ 𝐶 : Γ, 𝜏 ⇝ R ⇒
∀𝑛 `𝑛NS (𝐶 [𝑒1]) ≥ `NS (𝐶 [𝑒2]) ∧ ∀𝑉 `𝑛TV (𝐶 [𝑒1],𝑉) ≤ `TV (𝐶 [𝑒2],𝑉)

Lemma 5.3. Γ ⊨ 𝑒1 ≈ctx 𝑒2 : 𝜏 ⇐⇒ Γ ⊨ 𝑒1 ≼ctx 𝑒2 : 𝜏 ∧ Γ ⊨ 𝑒2 ≼ctx 𝑒1 : 𝜏

6 A SOUND LOGICAL-RELATIONS MODEL
The discriminating power of contextual equivalence arises from the universal quantification over

program contexts, which also makes it difficult to prove contextual equivalence directly. A popular

method to prove contextual equivalence is by first devising a logical-relations model and then

showing that it is sound with respect to contextual equivalence.

6.1 A Biorthogonal, Step-Indexed Definition
Figure 6 defines the logical-relations model. The relation on closed terms is defined using the

technique of biorthogonality (also known as ⊤⊤-closure) [Pitts and Stark 1998]. A biorthogonal

logical relation is automatically complete with respect to contextual equivalence. Two terms are in

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:17

Biorthogonality

O𝑛 (𝑒1, 𝑒2)
def

= `𝑛NS (𝑒1) ≥ `NS (𝑒2) ∧ ∀𝑉 `𝑛TV (𝑒1,𝑉) ≤ `TV (𝑒2,𝑉)
KJ𝜏K𝑛 (𝐾1, 𝐾2)

def

= ∀𝑚 ≤ 𝑛 ∀𝑣1 𝑣2 J𝜏K𝑚 (𝑣1, 𝑣2) ⇒ O𝑚 (𝐾1 [𝑣1], 𝐾2 [𝑣2])
EJ𝜏K𝑛 (𝑒1, 𝑒2)

def

= ∀𝑚 ≤ 𝑛 ∀𝐾1 𝐾2 KJ𝜏K𝑚 (𝐾1, 𝐾2) ⇒ O𝑚 (𝐾1 [𝑒1], 𝐾2 [𝑒2])

Semantic types

JRK𝑛 (𝑣1, 𝑣2)
def

= ∃𝑟 𝑣1 = 𝑣2 = c𝑟

J1K𝑛 (𝑣1, 𝑣2)
def

= 𝑣1 = 𝑣2 = ()

J2K𝑛 (𝑣1, 𝑣2)
def

= 𝑣1 = 𝑣2 = True ∨ 𝑣1 = 𝑣2 = False

J𝜏 ′→𝜏K𝑛 (𝑣1, 𝑣2)
def

= · ⊢ 𝑣1, 2 : 𝜏 ′→𝜏 ∧ ∀𝑚 ≤ 𝑛 ∀𝑣 ′
1
𝑣 ′
2

J𝜏 ′K𝑚
(
𝑣 ′
1
, 𝑣 ′

2

)
⇒ EJ𝜏K𝑚

(
𝑣1 𝑣

′
1
, 𝑣2 𝑣

′
2

)
J(𝜏, 𝜏 ′)K𝑛 (𝑣1, 𝑣2)

def

= ∃𝑢1 𝑢 ′
1
𝑢2 𝑢

′
2
𝑣1 =

(
𝑢1, 𝑢

′
1

)
∧ 𝑣2 =

(
𝑢2, 𝑢

′
2

)
∧ J𝜏K𝑛 (𝑢1, 𝑢2) ∧ J𝜏 ′K𝑛

(
𝑢 ′
1
, 𝑢 ′

2

)
Jdist 𝜏K𝑛 (𝑣1, 𝑣2)

def

= · ⊢ 𝑣1, 2 : dist 𝜏 ∧ EJ𝜏K𝑛 (sample 𝑣1, sample 𝑣2)

Lifting E to open terms

𝛾 ::= · | 𝛾, x ↦→ 𝑣

JΓK𝑛 (𝛾1, 𝛾2)
def

= ∀x ∈ domain(Γ) JΓ(x)K𝑛 (𝛾1x, 𝛾2x)
Γ ⊨ 𝑒1 ≼log 𝑒2 : 𝜏

def

= Γ ⊢ 𝑒1, 2 : 𝜏 ∧ ∀𝑛 ∀𝛾1 𝛾2 JΓK𝑛 (𝛾1, 𝛾2) ⇒ EJ𝜏K𝑛 (𝛾1𝑒1, 𝛾2𝑒2)
Γ ⊨ 𝑒1 ≈log 𝑒2 : 𝜏

def

= Γ ⊨ 𝑒1 ≼log 𝑒2 : 𝜏 ∧ Γ ⊨ 𝑒2 ≼log 𝑒1 : 𝜏

Figure 6. Logical-relations model

a biorthogonal term relation if plugging them into related continuations yields related observations.

So we need notions of relatedness for observations and for continuations.

Observation relatedness is given by an asymmetric relation O, called observational approximation.
It relates two programs 𝑒1 and 𝑒2 when the observable behavior (i.e., the measure semantics) of 𝑒1
approximates that of 𝑒2. Observational approximation is indexed on a step budget governing the

evaluation of 𝑒1 [Appel and McAllester 2001; Ahmed 2006]. Continuation relatedness is given byK .

Two continuations are related if composing them with related values yields related observations.

Value relatedness is given by a semantic interpretation of types J𝜏K, defined as a recursive

function that decreases on the size of 𝜏 . Two values are related at type 𝜏 when the introduction

(or elimination) forms of 𝜏 are related. In particular, two distribution-typed values are related if

sampling the distributions yields related terms.

The E relation on closed terms is then lifted to logical approximation (≼log), a relation on open

terms, by quantifying over step indices and over related closing substitutions 𝛾1 and 𝛾2 for the free

variables bound in Γ. The notation 𝛾𝑒 means applying substitution function 𝛾 to 𝑒 . Finally, logical

equivalence (≈log) is defined as logical approximation in both directions.

6.2 Soundness
Monotonicity of step-indexed logical relations. It follows from Theorem 4.2 that the logical

relations are monotone in the step index—what holds in the current world (i.e., at step index 𝑛)

also holds in future worlds (i.e., at step index𝑚 < 𝑛).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

16:18 Yizhou Zhang and Nada Amin

Γ ⊨ 𝑒1 ≼log 𝑒2 : dist 𝜏

Γ ⊨ sample 𝑒1 ≼log sample 𝑒2 : 𝜏

Γ ⊨ 𝑒1 ≼log 𝑒2 : R

Γ ⊨ score 𝑒1 ≼log score 𝑒2 : 1
Γ ⊨ Unif ≼log Unif : dist R

Γ, this : 1→𝜏 ⊨ 𝑒1 ≼log 𝑒2 : 𝜏

Γ ⊨ fix this. 𝑒1 ≼log fix this. 𝑒2 : 1→𝜏

Γ ⊨ 𝑒1 ≼log 𝑒2 : R

Γ ⊨ query 𝑒1 ≼log query 𝑒2 : dist R

Figure 7. Selected compatibility lemmas

Lemma 6.1. If 𝑚 ≤ 𝑛 and O𝑛 (𝑒1, 𝑒2) is true, then O𝑚 (𝑒1, 𝑒2) is true. The same holds, mutatis mutandis,
for the step-indexed logical relations EJ𝜏K, KJ𝜏K, J𝜏K, and JΓK.

Compatibility lemmas. The building blocks of this section’s main theorems are the so-called

compatibility lemmas. Figure 7 shows the most relevant ones, presented in the style of inference

rules to evoke a structural correspondence to the typing rules in Figure 3. Compatibility proofs

for the deterministic fragment of the language use Lemmas 4.9–4.10 (to reduce the LHS term),

Lemmas 4.17–4.18 (to reduce the RHS term), and Lemma 6.1. The lemma for fix requires induction

on the step index, due to the recursive nature of its operational semantics. The lemma for Unif
relies on Lemmas 4.11–4.12 and 4.21–4.22. Expectedly, proving the compatibility lemma for query
requires the most work. It uses Lemma 4.15 and Fact (4.5), as well as Lemmas 4.9–4.10 and 4.19–4.20.

Fundamental property. From the compatibility lemmas follows the so-called fundamental theo-

rem of logical relations [Statman 1985]: a well-typed term is logically related to itself. The proof is by

induction on typing derivations and by applying the appropriate compatibility lemma in each case.

Theorem 6.2 (Fundamental Property). If Γ ⊢ 𝑒 : 𝜏 , then Γ ⊨ 𝑒 ≼log 𝑒 : 𝜏 .

Soundness. Our goal is to show that logical relatedness implies contextual equivalence, for which

we need Lemmas 6.3 and 6.4. Precongruence is proven by induction on context-typing derivations

and by applying the appropriate compatibility lemma in each case.

Lemma 6.3 (Precongruence). If Γ ⊨ 𝑒1 ≼log 𝑒2 : 𝜏 and ⊢ 𝐶 : Γ, 𝜏 ⇝ R, then · ⊨ 𝐶 [𝑒1] ≼log 𝐶 [𝑒2] : R.
Lemma 6.4 (Adeqacy). If · ⊨ 𝑒1 ≼log 𝑒2 : R, then O𝑛 (𝑒1, 𝑒2) for all 𝑛.
Soundness of the logical-relations model is immediate from Precongruence and Adeqacy.

Theorem 6.5 (Soundness). If Γ ⊨ 𝑒1 ≼log 𝑒2 : 𝜏 , then Γ ⊨ 𝑒1 ≼ctx 𝑒2 : 𝜏 .

This soundness theorem is our license to use logical relatedness to prove contextual equivalence.

In practice, logical-relations proofs often employ a third, even more usable approximation relation,

called ciu approximation:

Definition 6.6 (≼ciu). Γ ⊨ 𝑒1 ≼ciu 𝑒2 : 𝜏
def

= Γ ⊢ 𝑒1, 2 : 𝜏 ∧ ∀𝛾 ⊢ 𝛾 : Γ ⇒ ∀𝐾 ∀𝑛 O𝑛 (𝐾 [𝛾𝑒1], 𝐾 [𝛾𝑒2])
It considers two terms equivalent when closed instantiations (i.e., substitution for free variables) of

them yield related observable behaviors when used (i.e., placed inside evaluation contexts) [Mason

and Talcott 1991]. We can show that ciu approximation entails logical approximation:

Lemma 6.7 (≼ciu entails ≼log). If Γ ⊨ 𝑒1 ≼ciu 𝑒2 : 𝜏 , then Γ ⊨ 𝑒1 ≼log 𝑒2 : 𝜏 .

It follows from Theorem 6.5 and Lemma 6.7 that contextual approximation can be established by

showing ciu approximation. Ciu approximation is easier to use than contextual approximation

because the universal quantification is over evaluation contexts 𝐾 , a subclass of program contexts𝐶

that can be instantiated only by closed terms. It is also easier to use than the logical relation E
because evaluation contexts on both sides are the same. We work with ciu approximation in §7.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:19

6.3 Implementation in Coq
Building on the Coq development in §4.4, we further implemented the step-indexed logical-relations

model. All results in §6.2 are machine-checked, in about 2,000 lines of code.

7 REASONING ABOUT NESTED QUERIES: EXAMPLES
We now demonstrate how to use the reasoning principles established in the preceding sections

to prove novel equivalences. We use four examples: the first one equates programs that other-

wise would not be equivalent without using query (§7.2); the second one proves nested queries

semantically irrelevant in a usage previously considered prototypical (§7.3); the last two equate

decision-making programs where subtle syntactic differences lead to exponential differences in in-

ference efficiency (§7.4 and §7.5). To increase readability, the first example is simpler and explained

in greater detail. The other examples are more condensed, but their proofs exhibit similar patterns.

7.1 A Catalog of Standard Equivalences
Before addressing more challenging equivalences, we first catalog a few standard ones validated

using the logical relations. They help sanity-check that our semantics is reasonably conservative.

E1. If Γ ⊢ (_x . 𝑒) 𝑣 : 𝜏 , then Γ ⊨ (_x . 𝑒) 𝑣 ≈ctx 𝑒 {𝑣/x} : 𝜏 .
E2. Let 𝑒1, 𝑒2, and 𝑒3 be well-typed: (i) Γ ⊢ 𝑒1 : 𝜏1, (ii) Γ, x : 𝜏1 ⊢ 𝑒2 : 𝜏2, and (iii) Γ, y : 𝜏2 ⊢ 𝑒3 : 𝜏3.

Then Γ ⊨ let y = (let x = 𝑒1 in 𝑒2) in 𝑒3 ≈ctx let x = 𝑒1 in let y = 𝑒2 in 𝑒3 : 𝜏3.

E3. Let 𝑒1
def

= sampleNormal 𝑒𝑚1

��𝑒𝑠1 �� + sampleNormal 𝑒𝑚2

��𝑒𝑠2 �� and 𝑒2 def

= sampleNormal
(
𝑒𝑚1

+𝑒𝑚2

) √
𝑒2𝑠1+𝑒2𝑠2 ,

where Γ ⊢ 𝑒1,2 : R. Then Γ ⊨ 𝑒1 ≈ctx 𝑒2 : R.

E4. Let Γ ⊢ 𝑒 : 𝜏 and 𝑟1,2 ∈ (0, 1]. Then Γ ⊨ score c𝑟1 ; score c𝑟2 ; 𝑒 ≈ctx score
(
c𝑟1 × c𝑟2

)
; 𝑒 : 𝜏 .

E5. Let 𝑟 ∈ (0, 1]. Then · ⊨ score c𝑟 ≈ctx if sampleBern c𝑟 then (score c1) else (score c0) : 1.
E6. Let Γ ⊢ 𝑒 : R and 𝑟 ∈ (0, 1]. Then Γ ⊨ query 𝑒 ≈ctx query (score c𝑟 ; 𝑒) : dist R.
E7. Let x : R ⊢ 𝑒 : R. Suppose that for all 𝑟 ∈ R, 𝑒 {c𝑟/x} always terminates, with model evidence

𝑓 (𝑟) def

= `NS (𝑒 {c𝑟/x}) > 0. Suppose op is a unary operator such that interp (op, c𝑟) = c𝑓 (𝑟) .
Then x : R ⊨ 𝑒 ≈ctx score op(x); sample (query 𝑒) : R.

These equivalences are adapted from those reported in Staton [2017], Culpepper and Cobb [2017],

and Wand et al. [2018]. E1 is equivalence under 𝛽-reduction. E2 is associativity of let-binding. E3
shows that the sum of two Gaussians is a Gaussian. E4 is distributivity of scoring. E5 suggests

that (1-bounded) soft constraints can be implemented in terms of hard constraints. E6 shows that

introducing independent scoring into a computation does not change its normalized measure. E7

justifies the resampling technique: a computation 𝑒—especially when it performs conditioning—can

equivalently be implemented by obtaining a normalized representation of 𝑒 , resampling from it,

and scoring the model evidence, to prevent a proliferation of low-weight samples.

7.2 Fixing False Equivalences Using NestedQueries
We revisit the first equivalence question posed in §1, wherein a false equivalence between 𝑒1
and 𝑒2 is fixed by a true equivalence between sample (query 𝑒1) and 𝑒2. Specifically, we show

y : 2 ⊨ sample (query 𝑒1) ≈ctx 𝑒2 : 2 where 𝑒1 and 𝑒2 are defined as follows (assuming an equality

operator over Boolean values):

𝑒1
def

= let x = sampleBern c0.2 in
let _ = score (if x=y then c1 else c0) in
x

𝑒2
def

= let f = fix this. _y. let x = sampleBern c0.2 in
if x=y then x else this () y in

f () y

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

16:20 Yizhou Zhang and Nada Amin

Proof. By Lemma 5.3, the goal amounts to showing contextual approximations in both directions.

By Soundness (Theorem 6.5) and Lemma 6.7, we can show ciu approximations instead:

y : 2 ⊨ sample (query 𝑒1) ≼ciu 𝑒2 : 2 y : 2 ⊨ 𝑒2 ≼ciu sample (query 𝑒1) : 2

By Definition 6.6, we need to show that for all 𝑣 ∈ {True, False}, 𝐾 , and 𝑛, the following observa-

tional approximations hold:

O𝑛 (𝐾 [sample (query 𝑒1 {𝑣/y})], 𝐾 [𝑒2 {𝑣/y}]) (7.1)

O𝑛 (𝐾 [𝑒2 {𝑣/y}], 𝐾 [sample (query 𝑒1 {𝑣/y})]) (7.2)

Here we verify them for the case 𝑣 = True; the case 𝑣 = False is analogous. Because O is monotone

(Lemma 6.1), it suffices to verify them for sufficiently large 𝑛’s—below we assume 𝑛 ≥ 11.

By the definition of the O relation, proving (7.1) amounts to showing the following inequalities:

`𝑛NS (𝐾 [sample (query 𝑒1 {True/y})]) ≥ `NS (𝐾 [𝑒2 {True/y}]) (7.3)

∀𝑉 `𝑛TV (𝐾 [sample (query 𝑒1 {True/y})],𝑉) ≤ `TV (𝐾 [𝑒2 {True/y}],𝑉) (7.4)

We simplify the step-indexed LHS of (7.4) first. For convenience, define 𝐽 to be an evalua-

tion context emerging during evaluation: 𝑒1 {True/y} = 𝐽
[
sampleBern c0.2

]
. The calculation below

works by repeatedly using the small-step semantics to step the term in question while applying

Lemmas 4.9–4.12 to evolve measures:

`𝑛TV (𝐾 [sample (query 𝑒1 {True/y})],𝑉) =
`𝑛−1TV (𝐾 [𝑒1 {True/y}],𝑉)

`𝑛−1NS (𝑒1 {True/y})

=
`𝑛−1TV (𝐾

[
𝐽
[
sampleBern c0.2

]]
,𝑉)

`𝑛−1NS (𝐽
[
sampleBern c0.2

]
)

=

∫
`𝑛−4TV (𝐾 [𝐽 [if c𝑟 ≤ c0.2 then True else False]],𝑉) d𝑟∫

`𝑛−4NS (𝐽 [if c𝑟 ≤ c0.2 then True else False]) d𝑟

=
0.2 · `𝑛−6TV (𝐾 [𝐽 [True]],𝑉) + 0.8 · `𝑛−6TV (𝐾 [𝐽 [False]],𝑉)

0.2 · `𝑛−6NS (𝐽 [True]) + 0.8 · `𝑛−6NS (𝐽 [False])

=
0.2 · `𝑛−9TV (𝐾 [let _ = score c1 in True],𝑉) + 0.8 · `𝑛−9TV (𝐾 [let _ = score c0 in False],𝑉)

0.2 · `𝑛−9NS (let _ = score c1 in True) + 0.8 · `𝑛−9NS (let _ = score c0 in False)

=
0.2 · `𝑛−11TV (𝐾 [True],𝑉) + 0.8 · 0

0.2 · `𝑛−11NS (True) + 0.8 · 0
= `𝑛−11TV (𝐾 [True],𝑉) (By Lemma 4.6, `𝑛−11NS (True) = 1)

Likewise, we have for the LHS of (7.3) that `𝑛NS (𝐾 [sample (query 𝑒1 {True/y})]) = `𝑛−11NS (𝐾 [True]).
Next we simplify the RHS of (7.4). Define 𝑒 ′

2
such that ⟨𝜎 | 𝑒2 {True/y}⟩ {𝑚

〈
𝜎
�� 𝑒 ′

2

〉
• 1 for all

𝑚 and 𝜎 . That is, 𝑒 ′
2

def

= (fix this. ...) () True. It takes 10 steps to evaluate the recursive call 𝑒 ′
2
to a

return value or until 𝑒 ′
2
appears as the redex again. Thus, by repeatedly applying Lemmas 4.10 and

4.12 and taking evaluation steps, we can derive the following recursive equation:

`𝑚TV (𝐾
[
𝑒 ′
2

]
,𝑉) =

{
0 if 0 ≤ 𝑚 ≤ 9

0.2 · `𝑚−10
TV (𝐾 [True],𝑉) + 0.8 · `𝑚−10

TV

(
𝐾
[
𝑒 ′
2

]
,𝑉

)
if𝑚 ≥ 10

(7.5)

Taking the limit of each side of (7.5), we have `TV
(
𝐾
[
𝑒 ′
2

]
,𝑉

)
= `TV (𝐾 [True],𝑉). So by Lemma 4.18,

`TV (𝐾 [𝑒2 {True/y}],𝑉) = `TV
(
𝐾
[
𝑒 ′
2

]
,𝑉

)
= `TV (𝐾 [True],𝑉). Likewise, we can derive for the RHS

of (7.3) that `NS (𝐾 [𝑒2 {True/y}]) = `NS (𝐾 [True]). Thus (7.3) and (7.4) are true:

`𝑛NS (𝐾 [sample (query 𝑒1 {True/y})]) = `𝑛−11NS (𝐾 [True]) ≥ `NS (𝐾 [True]) = `NS (𝐾 [𝑒2 {True/y}])
`𝑛TV (𝐾 [sample (query 𝑒1 {True/y})],𝑉) = `𝑛−11TV (𝐾 [True],𝑉) ≤ `TV (𝐾 [True],𝑉) = `TV (𝐾 [𝑒2 {True/y}],𝑉)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:21

Agents1
def

= fix this. (Alice1, Bob1)

Alice1
def

= _d . let aLoc = sampleBern aPrior in
let bLoc = snd (this ()) (d − c1) in
let _ = ScoreLoc aLoc bLoc in aLoc

Bob1
def

= _d . let bLoc = sampleBern bPrior in
if d > c0 then
let aLoc = fst (this ()) d in
let _ = ScoreLoc aLoc bLoc in bLoc

else bLoc

CG1
def

= __. sample (query (fst (Agents1 ()) c8))

Agents2
def

= fix this. (Alice2, Bob2)

Alice2
def

= _d . let aLoc = sampleBern aPrior in
let bLoc = sample (query (snd (this ()) (d − c1))) in
let _ = ScoreLoc aLoc bLoc in aLoc

Bob2
def

= _d . let bLoc = sampleBern bPrior in
if d > c0 then
let aLoc = sample (query (fst (this ()) d)) in
let _ = ScoreLoc aLoc bLoc in bLoc

else bLoc

CG2
def

= __. sample (query (fst (Agents2 ()) c8))

Figure 8. CG2 encodes Figure 1 using the core calculus. Unlike CG2 , CG1 does not use nested queries.

Above we proved observational approximation (7.1). We can show that the other direction (7.2)

holds too. By (7.5) and by induction on 𝑛,

`𝑛TV (𝐾 [𝑒2 {True/y}],𝑉) = `𝑛−1TV

(
𝐾
[
𝑒 ′
2

]
,𝑉

)
= 0.2 · `𝑛−11TV (𝐾 [True],𝑉) + 0.8 · `𝑛−11TV

(
𝐾
[
𝑒 ′
2

]
,𝑉

)
≤ 0.2 · `𝑛−11TV (𝐾 [True],𝑉) + 0.8 · `TV (𝐾 [True],𝑉) (By the induction hypothesis)

≤ `TV (𝐾 [True],𝑉) = `TV (𝐾 [sample (query 𝑒1 {True/y})],𝑉)

Similarly, we have `𝑛NS (𝐾 [𝑒2 {True/y}]) ≥ `NS (𝐾 [sample (query 𝑒1 {True/y})]). □

The example above shows that our semantics and logical relations can be applied to reason

about programs like 𝑒2 that admit nonterminating executions. Nonetheless, it is nonessential to

equivalences of this flavor that one of the programs in the equivalence exhibits nontermination:

Holtzen et al. [2019, §A] pose (and correctly reject) a similar equivalence, which otherwise holds

when terms are placed inside queries.

7.3 Coordination Game
Encodings. The right column of Figure 8 uses the core PPL to encode the coordination game in

Figure 1. Mutual recursion between the agents is encoded by Agents2 , a fixpoint function whose

body is a pair; recursive reference is via pair projection. Agents’ prior preferences are represented

by free variables aPrior and bPrior . Now alter the encoding to obtain Agents1, Alice1, Bob1, and CG1
(shown in the left column of Figure 8) such that Alice1 and Bob1 are free of nested queries.

Equivalence. We prove the equivalence aPrior : R, bPrior : R ⊨ CG1 () ≈ctx CG2 () : 2.

Proof Sketch. As in the previous example, we show contextual equivalence by showing ciu ap-

proximation in both directions. Below we focus on the direction aPrior : R, bPrior : R ⊨ CG1 () ≼ciu
CG2 () : 2; the other direction is analagous.

We need to show for all 𝛾 substituting for aPrior and bPrior , for all evaluation contexts 𝐾 , and

for all 𝑛, O𝑛 (𝐾 [𝛾CG1 ()], 𝐾 [𝛾CG2 ()]) holds. This goal consists of two inequalities, one for `NS and
the other for `TV. The proof proceeds in a simlar pattern to the previous example, stepping terms

on both sides and evolving measures per Lemmas 4.9–4.12 and Lemmas 4.17–4.22.

CG2 uses nested queries, so calculations on the RHS need to handle normalization factors. The

key enabler of this proof is the cancellation of normalization factors in the numerator and the

denominator of the RHS. Below we illustrate this for `TV (𝐾 [𝛾CG2 ()],𝑉). For convenience, let
𝐽T

def

= let bLoc = [·] in let _ = ScoreLoc True bLoc in True denote an evaluation context that can

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

16:22 Yizhou Zhang and Nada Amin

emerge during evaluation; 𝐽F is similarly defined, substituting False for True. Let c𝑎 be the value
that 𝛾 substitutes for aPrior . The RHS measure of interest is transformed as follows:

`TV (𝐾 [𝛾CG2 ()],𝑉) = `TV (𝐾 [sample (query (fst (𝛾Agents2 ()) c8))],𝑉)

=
`TV (𝐾 [fst (𝛾Agents2 ()) c8],𝑉)

`NS (fst (𝛾Agents2 ()) c8)
=

𝑎 · `TV (𝐾 [𝐽T [sample (query (snd (𝛾Agents2 ()) c7))]],𝑉) +
(1 − 𝑎) · `TV (𝐾 [𝐽F [sample (query (snd (𝛾Agents2 ()) c7))]],𝑉)
𝑎 · `NS (𝐽T [sample (query (snd (𝛾Agents2 ()) c7))]) +

(1 − 𝑎) · `NS (𝐽F [sample (query (snd (𝛾Agents2 ()) c7))])

=

𝑎 · `TV(𝐾 [𝐽T [snd (𝛾Agents2 ()) c
7]],𝑉)

(((((((((
`NS(snd (𝛾Agents2 ()) c

7)
+ (1 − 𝑎) · `TV(𝐾 [𝐽F [snd (𝛾Agents2 ()) c

7]],𝑉)
(((((((((
`NS(snd (𝛾Agents2 ()) c

7)

𝑎 · `NS(𝐽T [snd (𝛾Agents2 ()) c
7])

(((((((((
`NS(snd (𝛾Agents2 ()) c

7)
+ (1 − 𝑎) · `NS(𝐽F [snd (𝛾Agents2 ()) c

7])
(((((((((
`NS(snd (𝛾Agents2 ()) c

7)

The cancellation of normalization factors allows the RHS to match the form of the LHS. The rest of

the proof is unsurprising and is not shown here to save tediousness. □

As the proof makes explicit, the equivalence hinges on the cancellation of normalization factors,

which is a consequence of Alice’s reasoning about Bob’s reasoning being independent of Alice’s

choice—by the problem definition, the agents cannot communicate. Given that the coordination

game is the first example Stuhlmüller and Goodman [2014] use to illustrate the modeling power of

nested queries, its equivalence to a nested-query-free variant comes as a surprise.

Performance. Nested queries prove semantically irrelevant in this example, but they have implica-

tions for inference efficiency. The figure below plots running times (in milliseconds) for CG1 and

CG2 in logarithmic scale. The inference algorithm at work is WebPPL’s default choice for discrete

random variables, which enumerates random choices for exact inference.

5 6 7 8 9 10 11

10
1

10
2

10
3

10
4 CG1

CG2
Running time of CG1 grows exponentially as the problem size (namely

depth of metareasoning) increases, while that of CG2 is inconspicuous.

The contrast results from a simple optimization applied to nested queries:

query results are deterministic—they are distributions—so it makes sense

to memoize them. In CG2 , because different choices of location at a higher

depth can lead to the same query at a lower depth, the same inference

problem effectively gets queried multiple times, with subsequent queries fetching the memoized

distribution and thus amortizing the cost of the first query. Hence, running time of CG2 grows

linearly, although the trend is indiscernible in the plot because problem sizes are too small.

More nesting is not necessarily better for arbitrary inference algorithms, though. It is possible that

Monte Carlo algorithms may have better asymptotic behavior in the absence of nesting, measured

by variance or convergence rate.

7.4 Markov Decision Processes
Encodings. Markov decision processes (MDPs) [Howard 1960] are a widely used framework for

expressing sequential decision-making problems. Figure 9 shows two generic MDP encodings.

Each encoding consists of two mutually recursive functions, Action and Cost. Action samples an

action and uses a score exp(−cost) term to bias the sample towards actions that will yield low cost

over time: the score of an action is in proportion to the softmin of its cost.

Cost computes the cost of taking a given action in a given state. The return value of Cost sums

two parts: the immediate cost obtained in the next state after applying a Transition function, and

costs to be accumulated in future states (discounted by a factor 𝑟). An agent chooses its nextAction

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:23

MDP1
def

= fix this. (Action1, Cost1)

Action1
def

= _state. let action = Prior () in
let cost = snd (this ()) action state in
let _ = score exp(−cost) in action

Cost1
def

= _action. _state.
let nextState = Transition action state in
if IsTerminalState nextState then

ImmediateCost nextState
else

let nextAction =

sample (query (fst (this ()) nextState)) in
let futureCosts =

snd (this ()) nextAction nextState in
ImmediateCost nextState + c𝑟 × futureCosts

MDP2
def

= fix this. (Action2, Cost2)

Action2
def

= _state. let action = Prior () in
let cost = snd (this ()) action state in
let _ = score exp(−cost) in action

Cost2
def

= _action. _state.
let nextState = Transition action state in
if IsTerminalState nextState then

ImmediateCost nextState
else

let futureCosts = sample (query (
let nextAction = fst (this ()) nextState in
snd (this ()) nextAction nextState

)) in
ImmediateCost nextState + c𝑟 × futureCosts

Figure 9. Two generic MDP encodings. They differ in what the query terms encompass.

in nextState by using a nested query to recursively reason about how different actions play out in

the future. The encoding is reminiscent of Bellman’s principle of optimality [Bellman 1957].

Functions Prior , Transition, IsTerminalState, and ImmediateCost are domain-specific and possibly

stochastic (but free of conditioning). The two robots mentioned in Figure 2, for example, instantiate

the generic MDP encodings on the problem domain of 2D-space path planning.

Equivalence. The encodings differ in what the query terms encompass. We prove the equivalence

· ⊨ MDP1 ≈ctx MDP2 : 1→(R→2, 2→R→R), where states and costs have type R and actions 2.
The proof proceeds similarly to §7.2 and §7.3, transforming measures under small-step reduction.

Intuitively, the equivalence holds because the term snd (this ()) nextAction nextState, which the

query term in Cost2 additionally encompasses, is free of conditioning effects: although it may

further call Action2 and score actions, the scoring is always screened off by an enclosing query

and thus unable to influence any random choice made in outer queries. So the proof amounts to

showing that the two nested queries have equal model evidence.

Unlike in §7.3, neither encoding is equivalent to a nested-query-free variant: an agent’s choice

of action enters into determining the model evidence of the nested query about the agent’s future.

Performance. The subtle difference between MDP1 and MDP2 has marked performance impli-

cations. We instantiated the encodings in WebPPL on a finite-horizon MDP problem; the figure

below plots running times of exact inference, increasing the problem size (namely MDP horizon).

All nested queries are already memoized. Because nested queries are identified by nextState and
because different sequences of actions can lead to the same state, the memoized result of a nested

query can be reused for subsequent, identical queries. Running time increases exponentially with

both encodings, because the number of distinct queries grows exponentially.

8 9 10 11 12 13 14

10
2

10
3

10
4

MDP1
MDP2

Importantly,MDP1 scales exponentially worse thanMDP2 : with a horizon
of 14, inference ofMDP1 takes about 100 times as much time. The contrast is

because each query inMDP1 has to solve a larger inference problem than its

counterpart in MDP2 does. In MDP1, within a query of horizon ℎ, recursive

call snd (this ()) nextAction nextState happens ℎ times and thus sampling

of query (fst (this ()) nextState) happens ℎ − 1 times, meaning that the

enclosing query of the recursive calls has to exhaust all 𝛼ℎ executions of a

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

16:24 Yizhou Zhang and Nada Amin

search tree of depth ℎ (where 𝛼 is the branching factor). By contrast, in MDP2 , every recursive call

happens within a query nested inside its caller, so each query works on a search tree of depth𝑂 (1).
Hence, MDP2 optimizes MDP1 while preserving semantics.

7.5 Multi-Agent Sequential Decision Making

5 6 7 8 9 10 11

10
2

10
3

10
4

10
5 MAD1

MAD2
The encodings and equivalence in §7.4 can be generalized to sequential

decision making involving multiple agents who recursively reason about

one another. Stuhlmüller and Goodman [2014, §3.3] give a generic encoding.

This encoding, which we call MAD1, is analogous to MDP1. We construct a

provably equivalent encoding, MAD2 , analogous to MDP2 . We instantiated

the encodings on a two-agent game: the agents roam in a grid world to collect prizes, but they

are penalized if they get too close to each other. Notice that unlike the coordination game, neither

MAD1 norMAD2 is equivalent to a nested-query-free variant: agents reason recursively about each

other, fully aware of the moves the other agent has made. The figure above plots running times: as

the number of total rounds of play increases, MAD2 scales exponentially better than MAD1.

Our theory allows for formally relating probabilistic programs concerning usage of nested queries.

The proven equivalences justify program optimizations that accelerate some inference algorithms

by factorizing programs into recursively nested queries (§7.3) or by rearranging recursively nested

queries (§7.4 and §7.5). Future research can explore ways to automate such optimizations.

8 RELATEDWORK AND DISCUSSION
Operational semantics. Defining measure semantics by integrating a sampling-based operational
semantics is most thoroughly investigated by Borgström et al. [2016], Culpepper and Cobb [2017],

Wand et al. [2018], and Szymczak and Katoen [2019]. Culpepper and Cobb study a typed lambda

calculus without recursion, Borgström et al. and Wand et al. study untyped lambda calculi (thus

with recursion), and Szymczak and Katoen study an imperative while-language. Thus, except for

Culpepper and Cobb, all need to step-index a density function and take the limit of its integration.

None is concerned with nested queries.

These semantics represent the source of randomness differently. Culpepper and Cobb, Wand

et al., and Szymczak and Katoen all use the entropy space S (Definition 4.1), where an entropy

value can be infinitely split to generate samples. Borgström et al. use a measure space T of finite

traces, i.e., sequences of sample values. Infinite traces are also possible [Park et al. 2008]. The stock

measure over S is a probability measure, whereas that over T is 𝜎-finite. Wand et al. show that the

choice of S or T does not constitute fundamental differences in assigning meaning to probabilistic

programs: the measure spaces result in identical value measures.

Borgström et al. [2016] and Staton et al. [2016] give distribution-based operational semantics,

directly associating transitions with distributions rather than integrating over an entropy space.

Staton et al. study a typed lambda calculus without recursion but with nested queries. The opera-

tional semantics assumes a function that produces normalization factors for nested queries, so in

this sense the fixpoint knot remains to be tied.

Logical relations and contextual equivalence. Bizjak and Birkedal [2015], Culpepper and Cobb

[2017], andWand et al. [2018] use logical relations to establish contextual equivalence for probabilis-

tic programs. Bizjak and Birkedal consider only discrete probabilistic programs without conditioning,
while Culpepper and Cobb and Wand et al. support continuous distributions and scoring. Bizjak

and Birkedal and Wand et al. employ biorthogonality [Pitts and Stark 1998] and step indexing

[Ahmed 2006] to define logical relations. Only the formal development of Culpepper and Cobb is

mechanized, and we reuse their axiomatization of R+
and Lebesgue integration.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:25

Indistinguishability. Bizjak and Birkedal take it to mean identical probabilities of termination in

a PPL without conditioning. Wand et al. take it to mean identical unnormalized value measures, so

their contextual equivalence may not distinguish terms having different normalized measures. For

example, it would consider 𝑒1 and 𝑒2 below equivalent because `TV (𝐾 [𝑒1],𝑉) = `TV (𝐾 [𝑒2],𝑉) for
all 𝐾 and 𝑉 , despite that 𝑒2 diverges half the time while 𝑒1 terminates certainly:

𝑒1
def

= score c0.5; c1 𝑒2
def

= let diverge = fix this. this () in if sampleBern c0.5 then diverge () else c1

Our notion of indistinguishability is also more discriminative than a variant comparing normalized
measures. This variant is useful to Olmedo et al. [2018], who establish (via a weakest preexpectation

semantics) the correctness of a program transformation that compiles conditioning away, thus effec-

tively declaring conditioning as syntactic sugar. We consider normalization to be triggered explicitly

by the query construct and consider programs to otherwise denote unnormalized distributions.

Nontermination. Giving semantics to PPLs in the presence of conditioning and nontermination

is the subject of recent studies. Olmedo et al. [2018], Bichsel et al. [2018], and Szymczak and Katoen

[2019] all advocate semantics that distinguish programs—like 𝑒1 and 𝑒2 above—that have different

nontermination measures. Bichsel et al. additionally distinguish programmer mistakes (namely

stuck executions) from failing a hard constraint (namely score c0); like Szymczak and Katoen, we

lump them together for simplicity. Probabilistic programs with positive nontermination measure

offer useful modeling power; Icard [2017] and Szymczak and Katoen give examples.

A subtle equivalence our semantics allows is · ⊨ score c0 ≈ctx (fix this. score c0.5; this ()) () : 1.
The RHS computation loops, with its step-indexed model evidence approaching zero (but never

reaching zero). This equivalence is however sensitive to the treatment of zero-model-evidence

queries: treating sample (query (score c0)) as stuck, rather than denoting a point mass distribution

at exn, would invalidate the result, as the context sample (query [·]) would distinguish the terms.

Scoring and normalization. Staton et al. [2016] show that unbounded score can result in infinite

model evidence, causing normalization factors to be ill-defined. Borgström et al. [2016] show that

even statically bounded score can cause infinite model evidence in the presence of recursion. Bichsel

et al. [2018] show that statically bounded score can even cause the limit of step-indexed model

evidence to not exist when recursion is present. We compile a list of examples in the technical

report [Zhang and Amin 2021].

Borgström et al. and Szymczak and Katoen reconcile the tension between score and recursion by

imposing the restriction that the argument of score should not exceed 1. Culpepper and Cobb remark

that there is no syntactic restriction that can exclude programs having ill-defined model evidence

without also limiting expressive power. They and Wand et al. need not impose restrictions because

their semantics concern only unnormalized measures. We inherit the restriction of 1-bounded score
to ensure that measure of nonterminating executions is well-defined, though showing this in the

presence of nested queries is more difficult. Bounded scoring limits expressive power in general;

they are only as expressive as hard constraints (cf. E5 in §7.1). We observe that in metareasoning

applications, scoring in recursively nested queries tends to express goals and preferences of agents,

rather than observed data in statistical modeling, which in general needs unbounded scoring. This

observation seems to explain why examples in this paper are compatible with 1-bounded score.

Denotational semantics. Denotational semantics of probabilistic programs has received signifi-

cant development (e.g., Kozen [1979], Staton et al. [2016], Heunen et al. [2017]). Not many have

considered nested queries, though. Notably, Staton et al. give a denotational semantics to a calculus

with scoring and nested queries, but without recursion. They show an example of denotational

equality that resembles sequential Monte Carlo [Liu and Chen 1998], which can be viewed as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

16:26 Yizhou Zhang and Nada Amin

using nested queries to resample from normalized distributions. The theoretical development is

not readily applicable to equivalences motivating our study, which require the expressive power of

nesting queries recursively inside queries. Nonetheless, since the subprobability monad of Staton

et al. has a CPO structure, it should be possible to adapt the approach to address recursion. Future

research can study whether this denotational equality coincides with contextual equivalence.

Approximate Inference. Operational semantics based on entropy or traces idealize the Monte

Carlo inference method of likelihood weighting, by integrating over sample spaces and by infinitely

tracing executions (i.e., taking limits). Relaxing integration to sums and bounding execution traces,

our semantics corresponds to a simplistic implementation of nested Monte Carlo (NMC). NMC

is known to incur computational costs exponential in levels of nesting [Rainforth 2018], as each

sample of an outer random variable in general defines a different inference problem for the inner

query—a consequence of integration happening inside operational reduction. Efficient, general

approximate inferencemethods for recursively nested queries are still outstanding. Unless a program

has strong independence structures (e.g., coordination games), asymptotically exact inference is

likely intractable.

Potpourri. Nested queries bear a resemblance to evaluation within evaluation, which is one form

of computational reflection [Smith 1982]. In a historically damning paper on fexprs (a mechanism

for total reification), Wand [1998] proves that too much reification can hinder all optimizations,

admitting only “trivial” equalities. By contrast, nested queries have a richer equational theory.

Amortized exact inference (of the sort mentioned in §7.3) exists in varied forms [Stuhlmüller and

Goodman 2012; Gershman and Goodman 2014; Holtzen et al. 2020]. They consist in exploiting con-

ditional independence to factorize an overall inference problem into subproblems whose inference

cost can be shared. As our example equivalences suggest, nested queries can be viewed as a language

construct for compositionally delimiting Bayesian-inference subproblems within a larger program.

The Church PPL [Goodman et al. 2008] was first to advertise nested queries. Many PPLs support

them, including the logic PPL ProbLog [Mantadelis and Janssens 2011]. Ackerman et al. [2011],

Freer et al. [2014], and Huang et al. [2020] study the computability theory of query. Tavares et al.
[2019] and Tolpin et al. [2021] introduce random conditional distributions and stochastic conditioning,
respectively, in similar ways generalizing nested queries.

9 CONCLUSION
Nested queries, coupled with recursion, are a powerful language feature found in many PPLs. We

have developed an operational-semantics-based foundation for them. The development consists of a

recursive operational and measure semantics, capturing the semantic essence of nested queries, and

a logical-relations model and its metatheories, granting powerful equational reasoning principles.

Key, machine-checked results include well-definedness of limit measures and soundness of the

logical-relations model. We demonstrate the results’ usefulness by applying them in reasoning

about Bayesian models of intelligent agents, formally proving practically relevant equivalences

that were not suggested and could not be proved before.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback. We thank Elena Glassman, Jianlin

Li, Andrew Myers, François-René Rideau, Armando Solar-Lezama, and Zekun Wang for discussions

and help. This work was partially supported by NSERC. The views and opinions expressed are

those of the authors and do not necessarily reflect the position of any government agency.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

Reasoning about “Reasoning about Reasoning” 16:27

REFERENCES
Nathanael L. Ackerman, Cameron E. Freer, and Daniel M. Roy. 2011. Noncomputable Conditional Distributions. In Symp. on

Logic In Computer Science (LICS). https://doi.org/10.1109/LICS.2011.49

Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In European Symp. on
Programming (ESOP). https://doi.org/10.1007/11693024_6

AndrewW. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying Code.

ACM Tran. on Programming Languages and Systems (TOPLAS) 23, 5 (Sept. 2001). https://doi.org/10.1145/504709.504712

Richard E. Bellman. 1957. Dynamic Programming. Princeton University Press.

Benjamin Bichsel, Timon Gehr, and Martin Vechev. 2018. Fine-Grained Semantics for Probabilistic Programs. In European
Symp. on Programming (ESOP). https://doi.org/10.1007/978-3-319-89884-1_6

Aleš Bizjak and Lars Birkedal. 2015. Step-Indexed Logical Relations for Probability. In Int’l Conf. on Foundations of Software
Science and Computation Structures (FoSSaCS). https://doi.org/10.1007/978-3-662-46678-0_18

Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A Lambda-Calculus Foundation for

Universal Probabilistic Programming. In ACM SIGPLAN Conf. on Functional Programming (ICFP). https://doi.org/10.

1145/2951913.2951942

Coq [n.d.]. The Coq proof assistant. https://coq.inria.fr.

Ryan Culpepper and Andrew Cobb. 2017. Contextual Equivalence for Probabilistic Programs with Continuous Random

Variables and Scoring. In European Symp. on Programming (ESOP). https://doi.org/10.1007/978-3-662-54434-1_14

Owain Evans, Andreas Stuhlmüller, John Salvatier, and Daniel Filan. 2017. Modeling Agents with Probabilistic Programs.

https://agentmodels.org.

Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and State.

Theoretical Computer Science 103, 2 (1992). https://doi.org/10.1016/0304-3975(92)90014-7

Cameron E. Freer, Daniel M. Roy, and Joshua B. Tenenbaum. 2014. Towards Common Sense Reasoning via Conditional

Simulation: Legacies of Turing in Artificial Intelligence. Turing’s Legacy 42 (2014). arXiv:1212.4799

Samuel J. Gershman and Noah D. Goodman. 2014. Amortized Inference in Probabilistic Reasoning. In Annual Meeting of the
Cognitive Science Society (CogSci). https://cogsci.mindmodeling.org/2014/papers/098/paper098.pdf

Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A

Language for Generative Models. In Uncertainty in Artificial Intelligence (UAI). arXiv:1206.3255

Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and Implementation of Probabilistic Programming Languages.

http://dippl.org

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A Convenient Category for Higher-Order Probability

Theory. In Symp. on Logic In Computer Science (LICS). https://doi.org/10.1109/LICS.2017.8005137

Steven Holtzen, Todd Millstein, and Guy Van den Broeck. 2019. Symbolic Exact Inference for Discrete Probabilistic Programs.

(2019). arXiv:1904.02079

Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact Inference for Discrete Probabilistic Programs.

Proc. of the ACM on Programming Languages (PACMPL) 4, OOPSLA (2020). https://doi.org/10.1145/3428208

Ronald A. Howard. 1960. Dynamic Programming and Markov Processes. The MIT Press.

Daniel Huang, Greg Morrisett, and Bas Spitters. 2020. An Application of Computable Distributions to the Semantics of
Probabilistic Programs. Cambridge University Press. https://doi.org/10.1017/9781108770750.004

Thomas Icard. 2017. Beyond Almost-Sure Termination. In Annual Meeting of the Cognitive Science Society (CogSci). https:

//cogsci.mindmodeling.org/2017/papers/0430/paper0430.pdf

Dexter Kozen. 1979. Semantics of Probabilistic Programs. In Annual Symposium on Foundations of Computer Science (SFCS).
https://doi.org/10.1109/SFCS.1979.38

Jun S. Liu and Rong Chen. 1998. Sequential Monte Carlo Methods for Dynamic Systems. Journal of the American Statistical
Association 93, 443 (1998). https://doi.org/10.1080/01621459.1998.10473765

Theofrastos Mantadelis and Gerda Janssens. 2011. Nesting Probabilistic Inference. (2011). arXiv:1112.3785

Ian Mason and Carolyn Talcott. 1991. Equivalence in Functional Languages with Effects. Journal of Functional Programming
(JFP) 1, 3 (1991). https://doi.org/10.1017/S0956796800000125

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

https://doi.org/10.1109/LICS.2011.49
https://doi.org/10.1007/11693024_6
https://doi.org/10.1145/504709.504712
https://doi.org/10.1007/978-3-319-89884-1_6
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/2951913.2951942
https://coq.inria.fr
https://doi.org/10.1007/978-3-662-54434-1_14
https://agentmodels.org
https://doi.org/10.1016/0304-3975(92)90014-7
https://arxiv.org/abs/1212.4799
https://cogsci.mindmodeling.org/2014/papers/098/paper098.pdf
https://arxiv.org/abs/1206.3255
http://dippl.org
https://doi.org/10.1109/LICS.2017.8005137
https://arxiv.org/abs/1904.02079
https://doi.org/10.1145/3428208
https://doi.org/10.1017/9781108770750.004
https://cogsci.mindmodeling.org/2017/papers/0430/paper0430.pdf
https://cogsci.mindmodeling.org/2017/papers/0430/paper0430.pdf
https://doi.org/10.1109/SFCS.1979.38
https://doi.org/10.1080/01621459.1998.10473765
https://arxiv.org/abs/1112.3785
https://doi.org/10.1017/S0956796800000125

16:28 Yizhou Zhang and Nada Amin

Micaela Mayero. 2001. Formalisation et automatisation de preuves en analyses réelle et numérique. Ph.D. Dissertation.

Université Paris VI.

James H. Morris, Jr. 1968. Lambda-Calculus Models of Programming Languages. Ph.D. Dissertation. Massachusetts Institute

of Technology. http://hdl.handle.net/1721.1/64850

Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Annabelle McIver. 2018.

Conditioning in Probabilistic Programming. ACM Tran. on Programming Languages and Systems (TOPLAS) 40, 1 (2018).
https://doi.org/10.1145/3156018

Sungwoo Park, Frank Pfenning, and Sebastian Thrun. 2008. A Probabilistic Language Based on Sampling Functions. ACM
Tran. on Programming Languages and Systems (TOPLAS) 31, 1 (Dec. 2008). https://doi.org/10.1145/1452044.1452048

Andrew Pitts and Ian Stark. 1998. Operational Reasoning for Functions with Local State. In Higher Order Operational
Techniques in Semantics. https://homepages.inf.ed.ac.uk/stark/operfl.pdf

Tom Rainforth. 2018. Nesting Probabilistic Programs. In Uncertainty in Artificial Intelligence (UAI). arXiv:1803.06328

Thomas C. Schelling. 1980. The Strategy of Conflict. Harvard University Press.

Iris Rubi Seaman, Jan-Willem van de Meent, and David Wingate. 2020. Nested Reasoning About Autonomous Agents Using

Probabilistic Programs. (2020). arXiv:1812.01569

Brian Cantwell Smith. 1982. Procedural Reflection in Programming Languages. Ph.D. Dissertation. Massachusetts Institute of

Technology.

Rick Statman. 1985. Logical Relations and the Typed _-calculus. Information and Control 65, 2 (1985). https://doi.org/10.

1016/S0019-9958(85)80001-2

Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In European Symp. on Programming (ESOP).
https://doi.org/10.1007/978-3-662-54434-1_32

Sam Staton, FrankWood, Hongseok Yang, Chris Heunen, and Ohad Kammar. 2016. Semantics for Probabilistic Programming:

Higher-Order Functions, Continuous Distributions, and Soft Constraints. In Symp. on Logic In Computer Science (LICS).
https://doi.org/10.1145/2933575.2935313

Elias M. Stein and Rami Shakarchi. 2005. Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton University

Press. https://doi.org/10.2307/j.ctvd58v18

Andreas Stuhlmüller and Noah D. Goodman. 2012. A Dynamic Programming Algorithm for Inference in Recursive

Probabilistic Programs. (2012). arXiv:1206.3555

Andreas Stuhlmüller and Noah D. Goodman. 2014. Reasoning about Reasoning by Nested Conditioning: Modeling Theory

of Mind with Probabilistic Programs. Cognitive Systems Research 28 (2014). https://doi.org/10.1016/j.cogsys.2013.07.003

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. MIT press.

Marcin Szymczak and Joost-Pieter Katoen. 2019. Weakest Preexpectation Semantics for Bayesian Inference. In Int’l School
on Engineering Trustworthy Software Systems (SETSS). https://doi.org/10.1007/978-3-030-55089-9_3

Terence Tao. 2011. An Introduction to Measure Theory. American Mathematical Society. https://doi.org/10.1090/gsm/126

Zenna Tavares, Xin Zhang, Edgar Minaysan, Javier Burroni, Rajesh Ranganath, and Armando Solar-Lezama. 2019. The

Random Conditional Distribution for Higher-Order Probabilistic Inference. (2019). arXiv:1903.10556

David Tolpin, Yuan Zhou, and Hongseok Yang. 2021. Probabilistic Programs with Stochastic Conditioning. (2021).

arXiv:2010.00282

Mitchell Wand. 1998. The Theory of Fexprs is Trivial. Lisp and Symbolic Computation 10, 3 (1998). https://doi.org/10.1023/A:

1007720632734

Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual Equivalence for a

Probabilistic Language with Continuous Random Variables and Recursion. Proc. of the ACM on Programming Languages
(PACMPL) 2, ICFP (2018). https://doi.org/10.1145/3236782

Yizhou Zhang and Nada Amin. 2021. Semantics and Contextual Equivalence for Probabilistic Programs with Nested Queries
and Recursion. Technical Report CS-2021-02. School of Computer Science, University of Waterloo. https://uwaterloo.ca/

computer-science/sites/ca.computer-science/files/uploads/files/cs-2021-02.pdf

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 16. Publication date: January 2022.

http://hdl.handle.net/1721.1/64850
https://doi.org/10.1145/3156018
https://doi.org/10.1145/1452044.1452048
https://homepages.inf.ed.ac.uk/stark/operfl.pdf
https://arxiv.org/abs/1803.06328
https://arxiv.org/abs/1812.01569
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.2307/j.ctvd58v18
https://arxiv.org/abs/1206.3555
https://doi.org/10.1016/j.cogsys.2013.07.003
https://doi.org/10.1007/978-3-030-55089-9_3
https://doi.org/10.1090/gsm/126
https://arxiv.org/abs/1903.10556
https://arxiv.org/abs/2010.00282
https://doi.org/10.1023/A:1007720632734
https://doi.org/10.1023/A:1007720632734
https://doi.org/10.1145/3236782
https://uwaterloo.ca/computer-science/sites/ca.computer-science/files/uploads/files/cs-2021-02.pdf
https://uwaterloo.ca/computer-science/sites/ca.computer-science/files/uploads/files/cs-2021-02.pdf

	Abstract
	1 Introduction
	2 Syntax and Static Semantics
	3 Brief Recap of Measure Theory
	4 Operational Semantics and Measure Semantics
	4.1 Semantics in the Absence of Nested Queries
	4.2 Semantics in the Presence of Nested Queries
	4.3 Properties of the Semantics
	4.4 Implementation in Coq

	5 Contextual equivalence
	6 A Sound Logical-Relations Model
	6.1 A Biorthogonal, Step-Indexed Definition
	6.2 Soundness
	6.3 Implementation in Coq

	7 Reasoning about Nested Queries: Examples
	7.1 A Catalog of Standard Equivalences
	7.2 Fixing False Equivalences Using Nested Queries
	7.3 Coordination Game
	7.4 Markov Decision Processes
	7.5 Multi-Agent Sequential Decision Making

	8 Related Work and Discussion
	9 Conclusion
	References

